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Abstract

Increasing use of machine learning (ML) technologies in
privacy-sensitive domains such as medical diagnoses, lifestyle
predictions, and business decisions highlights the need to bet-
ter understand if these ML technologies are introducing leak-
age of sensitive and proprietary training data. In this paper, we
focus on model inversion attacks where the adversary knows
non-sensitive attributes about records in the training data and
aims to infer the value of a sensitive attribute unknown to the
adversary, using only black-box access to the target classifi-
cation model. We first devise a novel confidence score-based
model inversion attribute inference attack that significantly
outperforms the state-of-the-art. We then introduce a label-
only model inversion attack that relies only on the model’s
predicted labels but still matches our confidence score-based
attack in terms of attack effectiveness. We also extend our
attacks to the scenario where some of the other (non-sensitive)
attributes of a target record are unknown to the adversary. We
evaluate our attacks on two types of machine learning models,
decision tree and deep neural network, trained on three real
datasets. Moreover, we empirically demonstrate the disparate
vulnerability of model inversion attacks, i.e., specific groups
in the training dataset (grouped by gender, race, etc.) could
be more vulnerable to model inversion attacks.

1 Introduction

Across numerous sectors, the use of ML technologies trained
on proprietary and sensitive datasets has increased signifi-
cantly, e.g., in the domains of personalized medicine [1–4],
product recommendation [5–7], finance and law [8–10], so-
cial media [11–13], etc. Companies provide access to such
trained ML models through APIs whereas users querying
these models are charged on a pay-per-query basis. With
the increasing use of ML technologies in personal data, we
have seen a recent surge of serious privacy concerns that were
previously ignored [14–17]. Therefore, it is important to inves-
tigate whether public access to such trained models introduces
new attack vectors against the privacy of these proprietary
and sensitive datasets used for training ML models. A model

inversion attack is one of such attacks on ML models that
turns the one-way journey from training data to model into a
two-way one, i.e., this attack allows an adversary to infer part
of the training data when it is given access to the target ML
model.

Fredrikson et al. [17, 18] proposed two formulations of
model inversion attacks. In the first one, which we call model

inversion attribute inference (MIAI) attack, the adversary
aims to learn some sensitive attribute of an individual whose
data are used to train the target model, and whose other at-
tributes are known to the adversary. This can be applied, e.g.,
when each instance gives information about one individual.
In the second formulation, which we call typical instance

reconstruction (TIR) attack, the adversary is given access
to a classification model and a particular class, and aims to
come up with a typical instance for that class. For example,
the adversary, when given access to a model that recognizes
different individuals’ faces, tries to reconstruct an image that
is similar to a target individual’s actual facial image.

Several recent studies investigate TIR attacks [19–21]. For
TIR attacks to be considered successful, it is not necessary for
a reconstructed instance to be quantitatively close to any spe-
cific training instance. In contrast, MIAI attacks are evaluated
by the ability to predict exact attribute values of individual in-
stances. Evaluation of TIR attacks is typically done by having
humans assessing the similarity of the reconstructed instances
(e.g., reconstructed facial images) to training instances. Thus
a model that is able to learn the essence of each class and
generalizes well (as opposed to relying on remembering in-
formation specific to training instances) will likely remain
vulnerable to such an attack. Indeed, it has been proven [21]
that a model’s predictive power and its vulnerability to such
TIR attacks are two sides of the same coin. This is because
highly predictive models are able to establish a strong correla-
tion between features and labels and this is the property that
an adversary exploits to mount the TIR attacks [21]. In other
words, the existence of TIR attacks is a feature of good classi-
fication models, although the feature may be undesirable in
some settings. We investigate whether the root cause of TIR
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attacks (high predictive power) also applies to MIAI attacks.
According to our observation, we point out that such is not
the case.

In this paper, we focus only on MIAI attacks on classifi-
cation models where data about individuals are used. More
specifically, we consider the attribute inference attacks where
the adversary leverages black-box access to an ML model
to infer the sensitive attributes of a target individual. While
attribute inference in other contexts has been studied exten-
sively in the privacy literature (e.g., user attribute inference
in social networks [22, 23]), there exists little work studying
to what extent model inversion introduces new attribute infer-
ence vulnerabilities. In the rest of the paper, we refer to MIAI
attacks whenever we use the term model inversion attack.

Proposed new model inversion attacks: In this paper, we
devise two new black-box model inversion attribute infer-
ence (MIAI) attacks: (1) confidence score-based MIAI attack
(CSMIA) and (2) label-only MIAI attack (LOMIA). The con-
fidence score-based MIAI attack assumes that the adversary
has access to the target model’s confidence scores whereas
the label-only MIAI attack assumes the adversary’s access
to the target model’s label predictions only. To the best of
our knowledge, ours is the first work to propose a label-only
MIAI attack. We empirically show that despite having access
to only the predicted labels, our label-only attack performs
on par with the proposed confidence score-based attack. Also,
both of our proposed attacks outperform state-of-the-art at-
tacks significantly. Furthermore, we note that defense mech-
anisms [17] that reduce the precision of confidence scores
or introduce noise in the confidence scores to thwart model
inversion attacks are ineffective against our label-only attack.

While the existing attacks [17, 18] assume that the adver-
sary has full knowledge of other non-sensitive attributes of
the target record, it is not clear how the adversary would per-
form in a setting where it has only partial knowledge of those
attributes. To understand the vulnerability of model inversion
attacks in such practical scenarios, we also propose exten-
sions of our attacks that work even when some non-sensitive
attributes are unknown to the adversary. Moreover, we also
investigate if there are scenarios when model inversion at-
tacks do not threaten the privacy of the overall dataset but are
effective on some specific groups of instances (e.g., records
grouped by race, gender, occupation, etc.). We empirically
show that there exists such discrimination across different
groups of the training dataset where a group is more vulnera-
ble than the others. We use the term disparate vulnerability

to represent such discrimination. We further investigate if
model inversion attribute inference attacks are able to infer
the sensitive attributes in data records that do not belong to
the training dataset of the target model but are drawn from the
same distribution. A model inversion attack with such capa-
bility compromises the privacy of not only the target model’s
training dataset but also breaches its distributional privacy.

We train two models– a decision tree and a deep neural

network with each of the three real datasets in our experiments,
General Social Survey (GSS) [24], Adult dataset [25], and
FiveThirtyEight dataset [26], to evaluate our proposed attacks.
To the best of our knowledge, ours is the first work that studies
MIAI attacks in such details on tabular datasets which is the
most common data type used in real-world ML [27].

Effective evaluation of model inversion attacks: Al-
though the Fredrikson et al. attack [17] primarily uses ac-
curacy to evaluate model inversion attacks, in this paper, we
argue that accuracy is not the best measure. This is because
simply predicting the majority class for all the instances can
achieve very high accuracy which certainly misrepresents
the performances of model inversion attacks. Moreover, we
argue that the F1 score, a widely used metric, is also not suf-
ficient by itself since it emphasizes only the positive class,
and simply predicting the positive class for all the instances
can achieve a significant F1 score. Hence, we propose to
also use G-mean [28] and Matthews correlation coefficient
(MCC) [29] as metrics in addition to precision, recall, ac-
curacy, false positive rate (FPR), and F1 score to design a
framework that can effectively evaluate any model inversion
attack.

While the existing MIAI attacks [17, 18] evaluate their
performance on binary sensitive attributes only, we evaluate
our attacks on multi-valued sensitive attributes as well. We use
attack confusion matrices to evaluate the attack performances
in estimating multi-valued sensitive attributes. Moreover, we
evaluate cases where an adversary aims to estimate multiple
sensitive attributes of a target record which also has not been
explored in the existing MIAI attacks [17, 18]. Finally, we
evaluate the number of queries to the black-box target models
to perform the proposed attacks.

Comparison with baseline attribute inference attacks:
We also compare the performances of various model inversion
attacks with those from attacks that do not query the target
model, e.g., randomly guessing the sensitive attribute accord-
ing to some distribution. When a particular model inversion
attack deployed against a target model performs similarly to
such attacks, we can conclude that the target model in not
vulnerable to that particular model inversion attack. Hence, in
this paper, we address the following general research question-
is it possible to identify when a model should be classified as
vulnerable to such model inversion attacks? More specifically,
does black-box access to a particular model really help the
adversary to estimate the sensitive attributes which is other-
wise impossible for the adversary? We demonstrate that our
proposed attacks significantly outperform baseline attribute
inference attacks that do not require access to the target model.

Summary of contributions: In summary, this paper makes
the following contributions:

1. We design two new black-box model inversion attribute
inference (MIAI) attacks: (1) confidence score-based
MIAI attack and (2) label-only MIAI attack. We define
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Table 1: Assumption of adversary capabilities/knowledge for different attack strategies.

Attack strategy
Predicted Confidence score Target individuals’ all All possible Marginal prior of Marginal prior Confusion

label along with non-sensitive attributes values of the the sensitive of all other (non- matrix of
predicted label including true label sensitive attribute attribute sensitive) attributes the model

NaiveA X X
RandGA X X(optional)
FJRMIA [17] X X X X X X
CSMIA X X X X
LOMIA X X X X

the various capabilities of the adversary and provide a
detailed threat model.

2. We conduct an extensive evaluation of our attacks using
two types of ML models, decision tree and deep neu-
ral network, trained with three real datasets. Evaluation
results show that our proposed attacks significantly out-
perform the existing attacks. Moreover, our label-only
attack performs on par with the proposed confidence
score-based MIAI attack despite having access to only
the predicted labels of the target model.

3. We extend both of our proposed attacks to the scenario
where some of the other (non-sensitive) attributes of a
target record are unknown to the adversary and demon-
strate that the performance of our attacks is not impacted
significantly in those circumstances.

4. We uncover that a particular subset of the training dataset
(grouped by attributes, such as gender, race, etc.) could
be more vulnerable than others to the model inversion
attacks, a phenomenon we call disparate vulnerability.

2 Problem Definition and Existing Attacks

2.1 Model Inversion Attribute Inference

An ML model can be represented using a deterministic func-
tion f where the input of this function is a d-dimensional vec-
tor x = [x1,x2, ...,xd ] that represents d attributes and y

0 2 Y
is the output. In the case of a regression problem, Y = R .
However, in this work, we focus on classification problems.
Therefore, more specifically, f outputs y

0 if it returns only the
predicted label and outputs R m if it returns the confidence
scores as well, where m is the number of unique class labels
(y1,y2, ...,ym) and R m represents the confidence scores re-
turned for these m class labels. Finally, the class label with
the highest confidence score is considered as the output of
the prediction model. We denote the dataset on which the f

model is trained as DST . From now on, we use the term y to
represent the actual value in the training dataset DST whereas
y
0 is used to represent the model output f (x). The values of

y and y
0 are the same in the case of a correct prediction or

different in the case of an incorrect prediction by f .
Now, some of the attributes in x introduced above could be

privacy sensitive. Without loss of generality, let’s assume that
x1 2 x is a sensitive attribute that the individual corresponding

to a data record in the training dataset does not want to reveal
to the public. However, a model inversion attack may allow an
adversary to infer this x1 attribute value of a target individual
given some specific capabilities, such as, access to the black-
box model (i.e., target model), background knowledge about
the target individual, etc.

2.2 Threat Model

The adversary is assumed to have all or a subset of the follow-
ing capabilities/knowledge (see Table 1):

• Access to the black-box target model, i.e., the adversary
can query the model with x = [x1,x2, ...,xd ] and obtain a
class label y

0 as the output.
• The confidence scores returned by the target model for

m class labels, i.e., R m.
• Full/partial knowledge of the non-sensitive attributes and

also knowledge of the true label of the target record.
• All possible (k) values of the sensitive attribute x1.
• Knowledge of marginal prior of the sensitive attribute

x1, i.e., p1 = {p1,1, p1,2, ..., p1,k} where k is the number
of all possible values of x1 and p1,k is the probability of
the k�th unique possible value.

• Knowledge of confusion matrix (C ) of the model where
C [y,y0] = Pr[ f (x) = y

0|y is the true label]. Here, confu-
sion matrix represents the performance of an ML model
when queried on the entire training dataset [17].

Note that, for the attacks designed in this paper, the ad-
versary does not need the knowledge of marginal priors of
any attributes (sensitive or non-sensitive). While our CSMIA
strategy does not require the knowledge of target model con-
fusion matrix, the LOMIA strategy indirectly assumes this
knowledge. The adversary has only black-box access to the
model, i.e., it has no knowledge of the model details (e.g., ar-
chitecture or parameters). Finally, we only consider a passive
adversary that does not aim to corrupt the machine learning
model or influence its output in any way.

2.3 Baseline Attack Strategies

2.3.1 Naive Attack (NaiveA)

A naive model inversion attack assumes that the adversary has
knowledge about the probability distribution (i.e., marginal
prior) of the sensitive attribute and always predicts the sensi-
tive attribute to be the value with the highest marginal prior.
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Therefore, this attack does not require access to the target
model. Note that this attack can still achieve significant ac-
curacy if the sensitive attribute is highly unbalanced, e.g., if
the sensitive attribute can take only two values and there is an
80%-20% probability distribution, predicting the value with
higher probability would result in 80% accuracy.

2.3.2 Random Guessing Attack (RandGA)

The adversary in this attack also does not require access to the
target model. The adversary randomly predicts the sensitive
attribute by setting a probability for each possible value. The
adversary may or may not have access to the marginal priors
of the sensitive attribute. Fig. 6(a) in Appendix A.1 shows
the optimal performance of random guessing attack in terms
of different metrics when the adversary sets different proba-
bilities for predicting the positive class sensitive attribute is
independent of its knowledge of marginal prior (0.3 in this
example). Note that, predicting the positive class for all the
instances with this attack (i.e., setting a probability 1 for the
positive class) would result in a significantly high F1 score,
mainly due to a recall of 100% (Fig. 6(a) in Appendix).

2.4 Fredrikson et al. Attack [17] (FJRMIA)

The Fredrikson et al. [17] black-box model inversion attack
assumes that the adversary can obtain the model’s predicted
label, has knowledge of all the attributes of a targeted record
(including the true y value) except the sensitive attribute, has
access to the marginal priors of all the attributes, and also
to the confusion matrix of the target model (see Table 1).
The adversary can query the target model multiple times by
varying the sensitive attribute (x1) and obtain the predicted y

0

values. After querying the model k times with k different x1
values (x1,0,x1,1, . . . ,x1,k�1) while keeping the other known
attributes unchanged, the adversary computes C [y,y0] ⇤ p1,i
for each possible sensitive attribute value, where

C [y,y0] = Pr[ f (x) = y
0| y is the true label]

and p1,i is the marginal prior of i-th possible sensitive attribute
value. Finally, the attack predicts the sensitive attribute value
for which the C [y,y0]⇤ p1,i value is the maximum.

3 Metrics for Evaluating MIAI Vulnerability

Though the impact of model inversion attacks can be over-
whelming, in this section, we aim to take a deep dive to un-
derstand if it is possible to determine when a model should be
classified as vulnerable and if the metrics considered in the
existing model inversion attack research are sufficient. More
specifically, we investigate the following general research
question- does black-box access to a particular model really

help the adversary to estimate the sensitive attributes which

is otherwise impossible for the adversary to estimate (i.e.,

without access to that black-box model)?

Understanding a model’s vulnerability to inversion attacks
requires a meaningful metric to evaluate and compare dif-
ferent model inversion attacks. The FJRMIA [17] primarily
uses accuracy. However, if we care only about accuracy, the
naive attack of simply guessing the majority class for all the
instances can achieve very high accuracy. Another widely
used metric is the F1 score. However, the F1 score of the
positive class emphasizes only on that specific class and thus,
as a one-sided evaluation, cannot be considered as the only

metric to evaluate the attacks. Otherwise, always guessing
the positive class may achieve similar or even better F1 score
(mainly due to a recall of 100%) than any sophisticated model
inversions attack that identifies the positive class instances
more strategically. Therefore, to understand whether access
to the black-box model considerably contributes to attack
performance and also to compare the baseline attack strate-
gies (that do not require access to the model, i.e., naive attack
and random guessing attack) to our proposed attacks, we use
the following two metrics in addition to precision, recall,
accuracy, FPR, and F1 score: G-mean [28] and Matthews
correlation coefficient (MCC) [29], as described below.

G-mean: G-mean is the geometric mean of sensitivity and
specificity [28]. Thus it takes all of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN)
into account. With this metric, the random guessing attack
can achieve a maximum performance of 50%. Note that, even
if the adversary has knowledge of marginal priors of the sensi-
tive attribute, it is not able to achieve a G-mean value of more
than 50% by setting different probabilities for predicting the
positive class sensitive attribute (Fig. 6(a) in Appendix). For
random guessing attack, the optimal G-mean value can be
achieved by setting the probability to 0.5. The G-mean for
the naive attack is always 0%.

G�mean =

r
T P

T P+FN
⇤ T N

T N +FP
(1)

Matthews correlation coefficient (MCC): This MCC met-
ric also takes into account all of TP, TN, FP, and FN, and is a
balanced measure which can be used even if the classes of the
sensitive attribute are of very different sizes [29]. It returns
a value between -1 and +1. A coefficient of +1 represents a
perfect prediction, 0 represents a prediction no better than
the random one, and -1 represents a prediction that is always
incorrect. Note that, even if the adversary has the knowledge
of marginal priors of the sensitive attribute, it is not able to
achieve an MCC value of more than 0 with the random guess-
ing attack strategy (details in Appendix A.1). Also, the naive
attack always results in an MCC of 0, independent of the
marginal prior knowledge (either TP=FP=0 or TN=FN=0).

MCC =
(T P⇤T N)� (FP⇤FN)p

(T P+FP)⇤ (T P+FN)⇤ (T N +FP)⇤ (T N +FN)
(2)

4 New Model Inversion Attacks

We design two new attack strategies: (1) confidence score-
based model inversion attack (CSMIA) and (2) label-only
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model inversion attack (LOMIA). Table 1 shows the differ-
ent adversary capabilities/knowledge assumptions for these
attacks in contrast to the existing attacks.

4.1 Confidence Score-based Model Inversion

Attack (CSMIA)

This attack exploits the confidence scores returned by the
target model. Unlike FJRMIA [17], the adversary assumed in
this attack does not have access to the marginal priors or the
confusion matrix. The adversary knows the true labels for the
records it is attacking (Table 1). The key idea of this attack
is that the target model’s returned prediction is more likely
to be correct and the confidence score is more likely to be
higher when it is queried with a record containing the original
sensitive attribute value (since the target model encountered
the target record with original sensitive attribute value during
training). In contrast, the target model’s returned prediction
is more likely to be incorrect when it is queried with a record
containing the wrong sensitive attribute value.

The adversary first queries the model by setting the sensi-
tive attribute value x1 to all possible k values while all other
known input attributes of the target record remain the same.
If the sensitive attribute is continuous, we can use binning to
turn it into a categorical attribute and recover an approximate
value. If there are two possible values of a sensitive attribute
(i.e., k = 2, well depicted by a yes/no answer from an individ-
ual in response to a survey question), the adversary queries
the model by setting the sensitive attribute value x1 to both
yes and no while all other known input attributes of the target
record remain the same. Let y

0
0 and con f0 be the returned

model prediction and confidence score when the sensitive
attribute is set to no. Similarly, y

0
1 and con f1 are the model

prediction and confidence score when the sensitive attribute
is set to yes. In order to determine the value of x1, this attack
considers the following three cases:

Case (1) If the target model’s prediction is correct only

for a single sensitive attribute value, e.g., y = y
0
0 ^ y != y

0
1 or

y != y
0
0 ^ y = y

0
1 in the event of a binary sensitive attribute, the

attack selects the sensitive attribute to be the one for which
the prediction is correct. For instance, if y = y

0
1 ^ y != y

0
0,

the attack predicts yes for the sensitive attribute and vice
versa. Note that, for this case, the adversary only requires the

predicted labels and does not require the confidence scores.
We leverage the records that fall into this case in our label-
only model inversion attack as described later in Section 4.2.

Case (2) If the model’s prediction is correct for multiple
sensitive attribute values, i.e., y = y

0
0 ^ y = y

0
1, the attack selects

the sensitive attribute to be the one for which the prediction
confidence score is the maximum. In the above example, if
the model’s prediction is correct with higher confidence when
yes value is set for the sensitive attribute, the attack outputs
the yes value for the x1 prediction and vice versa.

Case (3) If the model outputs incorrect predictions for all
possible sensitive attribute values, i.e., y != y

0
0 ^ y != y

0
1, the

attack selects the sensitive attribute to be the one for which
the prediction confidence is the minimum. In the above exam-
ple, if the model outputs the incorrect prediction with higher
confidence when yes value is set for the sensitive attribute,
the attack predicts the no value for x1 and vice versa.

4.2 Label-Only Model Inversion Attack (LO-

MIA)

This advanced attack assumes the adversary’s access to the
target model’s predicted labels only. Therefore, defense mech-
anisms [17] that reduce the precision of confidence scores or
introduce noise in the confidence scores in order to thwart
model inversion attacks are ineffective against our label-only
attack. The attack has the following steps as shown in Fig-
ure 1: (1) obtaining an attack dataset (DSA ), (2) training an
attack model A from DSA , and (3) leveraging A to infer the
sensitive attributes of target records.

4.2.1 Obtaining Attack Dataset DSA

The key intuition of this attack step is that if the target model
f returns the correct prediction (y) for only one possible value
of the sensitive attribute, it is highly likely that this particular
value represents the original sensitive attribute value, e.g.,
sensitive attribute value x1,0 in Figure 1. Hence, the adversary
then labels the record in this example with x1,0. The adver-
sary collects all such labeled records that fall into Case (1) as
described in Section 4.1 and obtains the DSA dataset. Note
that, the labeling of sensitive attributes might have some er-
rors, e.g., x1,0 in Figure 1 might not be the original sensitive
attribute of the record even though only with this value the
target model returned the correct prediction. Table 3 in Sec-
tion 5.2 shows the sizes of the DSA datasets obtained from
different target models in our experiments and their corre-
sponding accuracy. However, since the LOMIA attacker does
not know the original sensitive attribute values, it uses the
entire DSA datasets to train the attack models.

Note that, while building the attack model dataset DSA ,
we assume that the adversary knows the real y attribute of
all the instances in the training dataset. In other words, un-
like CSMIA, the adversary in LOMIA strategy assumes the
knowledge of the target model confusion matrix (Table 1).

4.2.2 Training Attack Model A
The next step is to train an attack model A where the in-
put would be the set of non-sensitive attributes from a target
record, i.e, a d-dimensional vector [x2, ...,xd ,y] and the out-
put would be a prediction for the sensitive attribute x1. The
adversary trains this attack model using the DSA dataset. The
key goal of this attack step is to learn how the target model
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Figure 1: Label-only model inversion attack (LOMIA). First, the adversary collects the case (1) records by querying the target
model f , obtains the DSA dataset, and trains the attack model A . The adversary then leverages the trained attack model to predict
the sensitive attribute values of the target records.

relates the sensitive attribute with the other non-sensitive at-
tributes including the target model’s prediction label. Note
that, the dataset used to train the attack model (DSA ) repre-
sents a strong correlation of the sensitive attribute values with
other non-sensitive ones ([x2, ...,xd ,y]) since it considers only
the Case (1) records.

4.2.3 Performing Sensitive Attribute Inference using A

Once the attack model A is trained, the adversary can simply
query A with the non-sensitive attributes of a target record and
obtain a prediction for the sensitive attribute. It is important
to note that the adversary could also query the model with the
non-sensitive attributes of a record that is not in the training
dataset (DST ), i.e., the record is not used while training the
target model. In Section 5.6, we demonstrate the effectiveness
of our attacks not only in compromising the privacy of the
training dataset but also their performance in breaching the
distributional privacy.

4.3 Estimating Multiple Sensitive Attributes

Our LOMIA and CSMIA strategies can be easily extended
to cases where the adversary aims to estimate multiple sen-
sitive attributes of a target record. Let, x1,x2 be the sensitive
attributes the adversary aims to estimate. Our strategies first
perform two instances of the attacks and then stitch them to-
gether. In other words, while trying to infer x1, the adversary
queries the target model without setting any value for x2 and
vice versa [30]. In the case of CSMIA, we estimate the values
of x1 and x2 independently by executing the CSMIA strategy
for each of these two attributes as described in Section 4.1.
In the case of LOMIA, we execute the LOMIA strategy in-
dependently for each of these two attributes as described in
Section 4.2.1 and train two separate attack models to estimate
the values of x1 and x2. The attack model to estimate x1 does
not take x2 as an input (since the adversary does not know
x2) and vice versa. Once the multiple sensitive attributes are
estimated, we can also evaluate the performance of the attacks
on these two attributes independently.

4.4 Attacks With Partial Knowledge of Target

Record’s Non-sensitive Attributes

Our attacks proposed in this section as well as the FJR-
MIA [17] strategy assume that the adversary has full knowl-
edge of the target record’s non-sensitive attributes. Although
these attacks raise serious privacy concerns against a model
trained on sensitive dataset, it is not clear how much risk is
incurred by these model inversion attacks if the adversary
has only partial access to the other non-sensitive attributes.
In many cases, it may be difficult or even impossible for an
adversary to obtain all of the non-sensitive attributes of a tar-
get record. Therefore, the goal of this section is to quantify
the risk of MIAI attacks in the cases where all non-sensitive
attributes of a target record are not known to the adversary.

Due to space constraints, in this section, we discuss only the
LOMIA strategy in the case of adversary’s partial knowledge
of non-sensitive attributes. The discussion on how CSMIA
handles this special case is described in Appendix A.2.

4.4.1 LOMIA With Partial Knowledge of Non-sensitive

Attributes

The attack dataset DSA for LOMIA is obtained from Case (1)
instances, i.e., the instances where only one sensitive attribute
value yields the correct model prediction y while all other non-
sensitive attributes x2, ...,xd remain unchanged, see Figure 1.
Hence, the attack models in LOMIA are highly dependent on
the y attribute and are less dependent on other non-sensitive
attributes. Therefore, even if multiple non-sensitive attributes,
except the y attribute, are unavailable to the attack model,
the LOMIA strategy’s performance does not degrade signifi-
cantly. Hence, when the adversary has partial knowledge of
a target record’s non-sensitive attributes, the adversary can
simply input the known non-sensitive attributes to the attack
model and estimate the sensitive attribute. The explanation
on how our attack models handle missing attributes is further
discussed in Section 5.8.

5 Evaluation

In this section, we discuss our experiment setup (i.e., datasets,
machine learning models, and performance metrics) and eval-
uate our proposed attacks. To facilitate reproducibility, the
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links to the original datasets (DST ), target models ( f ), at-
tack model datasets (DSA ), and attack models (A) have been
shared in the Availability section. We will also release our
codebase upon acceptance of the paper.

5.1 Datasets

General Social Survey (GSS) [24]: FJRMIA [17] uses the
General Social Survey (GSS) dataset to demonstrate their at-
tack effectiveness. This dataset has 51020 records with 11
attributes and is used to train a model that predicts how happy
an individual is in his/her marriage. However, the training
dataset for this model contains sensitive attribute about the
individuals: e.g., responses to the question ‘Have you watched

X-rated movies in the last year?’. Removing the data records
that do not have either the sensitive attribute or the attribute
that is being predicted by the target model (i.e., happiness in
marriage) results in 20314 records that we use in our experi-
ments. Among the 20314 original records, 4002 individuals
answered yes (sensitive attribute x1 = yes) to the survey ques-
tion on whether they watched X-rated movies in the last year,
i.e., 19.7% positive class (see Table 2). In order to understand
if our proposed model inversion attribute inference attacks
also breach the privacy of data that is not in the training dataset
of the target model but is drawn from the same distribution,
we split the dataset and use 75% data to train the target models
(15235 records in DST ) and use the rest 25% data to evaluate
attacks on other data from the same distribution (5079 records
in DSD). To ensure consistency, we evaluate other baseline
attack strategies including FJRMIA [17] on the target models
trained on the DST dataset. Among the 15235 records in the
DST dataset, 3017 individuals answered yes to the question
on x-rated movies, i.e., 19.8% positive class (see Table 2).

Table 2: Distribution of sensitive attributes in datasets.

Dataset Sensitive Positive Negative Positive Positive
attribute class label class label class count class %

GSS X-movie Yes No 4002 (3017) 19.7% (19.8%)
Adult Marital status Married Single 21639 (16893) 47.8% (47.9%)
Fivethirtyeight Alcohol Yes No 266 80.3%

Adult [25]: This dataset, also known as Census Income

dataset, is used to predict whether an individual earns over
$50K a year. The number of instances in this dataset is 48842
and it has 14 attributes. We merge the ‘marital status’ attribute
into two distinct clusters, Married: {Married-civ-spouse,
Married-spouse-absent, Married-AF-spouse} and Single:
{Divorced, Never-married, Separated, Widowed}. We then
consider this attribute (Married/Single) as the sensitive
attribute that the adversary aims to learn. After removing
the data records with missing values, the final dataset
consists of 45222 records. Similar to the GSS dataset, we
also split the Adult dataset and use 35222 records to train
the target models (DST ) and use the rest 10000 records to
evaluate attacks on data from the same distribution (DSD)
but not in DST . Among the 45222 (35222) records, 21639

Table 3: DSA datasets’ details obtained from target models.

Dataset Target Number of Number of instances with correctly
Model instances in DSA labeled sensitive attribute in DSA

GSS Decision tree 2387 1555
Deepnet 1011 564

Adult Decision tree 9263 7254
Deepnet 9960 7430

Fivethirtyeight Decision tree 49 (alcohol) 48
Fivethirtyeight Decision tree 75 (age group) 72

(16893) individuals are married (i.e., sensitive attribute x1 =
married), i.e., 47.8% (47.9%) positive class (Table 2). To
ensure consistency, we evaluate all attacks in comparison
against the target models trained on the DST dataset. The
‘relationship’ attribute in this dataset (values: husband,
wife, unmarried) is directly related to the marital status

sensitive attribute. Hence, for the attack setup practicality,
we have removed the ‘relationship’ attribute from this
dataset since otherwise the adversary could perform a
straightforward attack: if(relationship == husband
|| relationship == wife) then {marital_status =
married} else {marital_status = single}.

Fivethirtyeight [26]: This dataset is from a survey con-
ducted by the Fivethirtyeight Datalab, also used in FJR-
MIA [17]. 553 individuals were surveyed on a variety of
questions. This dataset is used to train a model that predicts
how an individual would like their steak prepared. In order
to evaluate the cases of estimating multi-valued and multiple
sensitive attributes, we consider two sensitive attributes in
this dataset: which age group an individual belongs to (multi-
valued, {18-29, 30-44, 45-60, > 60}) and whether an indi-
vidual drinks alcohol (binary, {yes,no}). Removing the data
records missing either the sensitive attributes or the model
output results in 331 data records. We do not split this dataset
further since the sample size is already small. Among 331
individuals, 266 answered yes to the question on drinking
alcohol, i.e., 80.3% positive class (Table 2). The age group
marginal prior distribution is {21.1%,28.1%,26%,24.8%},
respectively.

5.2 Machine Learning Models

To ensure a fair comparison with [17] which uses decision tree
models, we first trained decision tree (DT) target models on
the three datasets mentioned in Section 5.1. To further demon-
strate the generalizability of our attacks, we also trained deep
neural network (DNN) target models. However, we do not fur-
ther use the DNN model trained on the Fivethirtyeight dataset
as the model’s performance is very poor due to small training
set size. The confusion matrices of all the trained models are
given in Appendix (Tables 6, 7, 8, 9, 10, and 11). Since our
attack is black-box, the underlying architecture does not make
any difference in our attack algorithm and so, we chose DT
and DNN (the two most popular ML architecture for tabular
dataset) to perform our attack on. We leverage BigML [31],
an ML-as-a-service system, and use its default configurations
(1-click supervised training feature) to train these target mod-
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(a) Decision tree model trained on GSS dataset
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Figure 2: Comparison of attacks: FJRMIA [17], CSMIA, and LOMIA with baseline attack strategies NaiveA and RandGA.

els. The decision tree target models use BigML’s memory tree
optimization algorithm and smart pruning technique. Each
deep neural network target model has 3 hidden layers and
uses ADAM [32] as the optimization algorithm with a learn-
ing rate of 0.005. The attack models of LOMIA are trained
using BigML’s ensemble training algorithm with default con-
figurations, i.e., decision forest algorithm and smart pruning
technique. Table 3 shows the sizes of the DSA datasets ob-
tained from different target models along with the number of
instances with correctly labeled sensitive attribute in DSA .

5.3 Attack Performance Metrics

As mentioned earlier, the accuracy metric may fail to eval-
uate an attack or even misrepresent the attack performance
if the dataset is unbalanced. Table 2 shows the distribution
of sensitive attribute values in the datasets. Since the sensi-
tive attribute in the GSS dataset is unbalanced, a naive attack
always predicting the negative class would result in ⇠ 80%
accuracy, which is a misleading evaluation of attack perfor-
mance. Moreover, the F1 score alone is not a meaningful
metric to evaluate the attacks since it emphasizes only on the
positive class. Therefore, along with precision, recall, accu-
racy, and F1 score, we also use G-mean and MCC metrics as
described in Section 3 to evaluate our attacks on binary sensi-
tive attributes as well as to compare their performances with
that of the FJRMIA [17] and the baseline attacks (NaiveA
and RandGA). We discuss the false positive rates (FPR) of
the attacks in Section 5.5. In order to evaluate the proposed
and existing attacks on multi-valued sensitive attributes, we
compute and compare the confusion matrices of the attacks
as shown in Section 5.4.3.

We also evaluate the number of queries performed to the
target model by the FJRMIA, CSMIA, and LOMIA strate-
gies. For all the experiments in this section, the attacks in
comparison required the same number of queries. Section A.5
in Appendix presents the details of this comparison. Note
that, while the CSMIA extension for partial knowledge of
non-sensitive attributes suffer from combinatorial complexity
and make significantly more queries to the target model (Ta-
ble 26 and Appendix A.4), the LOMIA strategy in the cases of
partial knowledge of non-sensitive attributes does not require
any extra query to the target model (see Section 4.4.1).

5.4 New Model Inversion Attacks’ Results

and Comparison with Baseline Attacks

In this section, we compare CSMIA and LOMIA with exist-
ing FJRMIA [17], and also with baseline attack strategies that
do not require access to the target model, i.e., NaiveA and
RandGA. As described in Section 3, the goal behind com-
paring with NaiveA and RandGA is to understand whether
releasing the black-box model really adds more advantage to
the adversary to learn the sensitive attributes in the training
dataset. We pay special attention to the Case (1) instances and
analyze the LOMIA performance on them separately.

In RandGA, always predicting the positive class would
result in 100% recall and thus high F1 score but a G-mean
of 0%. Therefore, for all the experiments in the following,
RandGA predicts the positive class with a 0.5 probability, thus
maximizing G-mean at 50% and ensuring a recall of 50%.
Figures 6(b) and 6(c) in Appendix show the performance of
RandGA on GSS and Adult datasets, respectively.

5.4.1 GSS Dataset

Figures 2(a) and 2(b) show the performances of the proposed
attacks against the decision tree and deepnet target models
trained on the GSS dataset, respectively, and present a com-
parison with FJRMIA, NaiveA, and RandGA. Table 12 in
Appendix shows the details of the metrics along with the TP,
TN, FP, and FN values. Since the sensitive attribute in this
dataset has an unbalanced distribution, the NaiveA strategy,
also mentioned in [17], predicts the sensitive attribute as no

for all the individuals and achieves an accuracy of 80.2%.
However, the precision, recall, F1 score, G-mean, and MCC
would all be 0% as shown in Figures 2(a) and 2(b). Note that,
NaiveA performance is independent of target ML model type.
As demonstrated in Figure 2(a), the FJRMIA [17] achieves a
very low recall and thus low F1 score. This is due to the fact
that the FJRMIA [17] relies on the marginal prior of the sensi-
tive attribute while performing the attack. Since the sensitive
attribute in the GSS dataset is unbalanced, the FJRMIA [17]
mostly predicts the negative sensitive attribute (i.e., the in-
dividual didn’t watch x-rated movie, marginal prior ⇠ 0.8)
and rarely predicts the positive sensitive attribute (i.e., the
individual watched x-rated movie, marginal prior ⇠ 0.2). In
contrast, our proposed CSMIA and LOMIA strategies achieve
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significantly high recall, F1 score, G-mean, and MCC while
also improving precision. The FJRMIA [17] performs better
only in terms of accuracy. However, note that the NaiveA also
achieves an accuracy of 80.2%, the highest among all attacks,
but there is no attack efficacy (0 true positive, see Table 12).
Our attacks also consistently outperform RandGA in terms
of all metrics. We emphasize that the records that belong to
Case (1) are more vulnerable to model inversion attacks.

It is noteworthy that the LOMIA strategy performs similar
to CSMIA despite having access to only the predicted labels.
Unlike CSMIA, the LOMIA strategy does not have cases and
uses a single attack model for all the target records. How-
ever, to better understand the contrast between the LOMIA
and CSMIA strategies, we demonstrate the performance of
LOMIA for the records in CSMIA cases separately (GSS
case-based results in Tables 13 and 14 in Appendix).

As shown in Figure 2(b), the FJRMIA [17] strategy again
achieves a high accuracy but an extremely low recall. It per-
forms almost like NaiveA with only 1 true positive and 5 false
positives (see Table 12). The RandGA strategy has the same
results as Figure 2(a) since this strategy is independent of the
target model (similar to NaiveA). Our attacks’ performances
against this model are not significantly better than RandGA,
even the LOMIA results on Case (1) are not significant. There-
fore, it may seem that according to the overall performance,
the deep neural network model trained on the GSS dataset
may not be vulnerable to model inversion attacks since the
RandGA attack even without access to the model may achieve
comparable performances. However, it is very important to
note that the RandGA strategy predicts the sensitive attribute
randomly whereas the model inversion attacks rely on the
outputs of a model that is trained on the dataset containing the
actual sensitive attributes. Even if the overall performance of
a model inversion attack on the entire dataset does not seem to
be a threat, some specific groups of records (e.g., individuals
grouped by race, gender) in the dataset could still be vulnera-
ble. We discuss such discrimination in performances of model
inversion attacks later in Section 5.7.

5.4.2 Adult Dataset

Figure 2(c) shows the performances of the attacks against the
decision tree target model trained on the Adult dataset. The
results for deepnet target model are very similar to that of de-
cision tree (see Figure 7 in Appendix). Table 15 in Appendix
shows the details along with the TP, TN, FP, and FN values.
Since the sensitive attribute is more balanced in this dataset,
the NaiveA strategy has an accuracy of only 52.1%, and the
other metrics are at 0%. FJRMIA [17] results in a precision
comparable to our attacks but achieves much less in terms of
the other metrics. Our attacks also significantly outperform
RandGA in terms of all metrics except the recall.

Tables 16 and 17 in Appendix show the contrast between
CSMIA and LOMIA in details. Observing the results of the
proposed attacks and also the performance against Case (1) in-

stances, we conclude that releasing the models trained on the

Adult dataset would add significant advantage to the adver-
sary in terms of learning the ‘marital status’ sensitive attribute.
This is because all our proposed attacks that query the models
for sensitive attribute inference perform significantly better
when compared to the NaiveA and RandGA adversary that
do not need any access to the model.

Overall, the attacks against the target models trained on
the Adult dataset demonstrate more effectiveness than that of
against the target models trained on the GSS dataset. There-
fore, we investigated if the correlations between the sensitive
attributes and the corresponding target models trained on
these datasets (in other words, the importance of the sensitive
attributes in the target models) differ significantly. However,
according to our observation, this is not the case. For instance,
the importance of the ‘x-rated-movie’ and ‘marital-status’
sensitive attributes in their corresponding decision tree target
models are 7.3% and 9.6%, respectively. Figure 8 in Ap-
pendix shows the importance of all attributes in these models.

5.4.3 FiveThirtyEight Dataset

In this section, we perform two sets of attack experiments
against the DT target model trained on the FiveThirtyEight
dataset: (i) inferring multi-valued sensitive attribute age

group, when all other non-sensitive attributes are known to
the adversary, and (ii) inferring both alcohol and age group,
i.e., the case of estimating multiple sensitive attributes.

(i) Estimating Multi-valued Sensitive Attributes

Tables 4 (a), (b), and (c) show the performances of the FJR-
MIA, CSMIA, and LOMIA strategies, respectively, in terms
of estimating a multi-valued sensitive attribute, i.e., age in
the FiveThirtyEight dataset. FJRMIA [17] predicts the age
group 30� 44 for all the target records (i.e., it boils down
to NaiveA, age group 30�44 has the highest marginal prior
among all, 28.1%). Also, RandGA strategy would achieve a
maximum accuracy of 25% in estimating this multi-valued
sensitive attribute (not shown in tables). In contrast, our pro-
posed CSMIA and LOMIA strategies achieve significantly
better results. The results in Table 4 (d) show the performance
of LOMIA on Case (1) instances which has an accuracy of
96%. Hence, we emphasize that the records in Case (1) are
significantly more vulnerable to model inversion attacks.

(ii) Estimating Multiple Sensitive Attributes

In this attack setting, the adversary estimates both the age
group and alcohol sensitive attributes of a target individual.
The attack results for estimating the multi-valued age group
attribute in this case are similar to that of Table 4. Due to
space constrains, we demonstrate the performances of the
FJRMIA, CSMIA, and LOMIA strategies in terms of esti-
mating the age group attribute in Tables 18, 19, and 20 in
Appendix, respectively. The attack results for estimating the
binary attribute alcohol are given in Table 23.
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Table 4: Attacks against DT target model trained on FiveThirtyEight dataset to infer ‘age’ sensitive attribute, attack confusion
matrices of (a) FJRMIA, (b) CSMIA, (c) LOMIA, and (d) LOMIA (Case 1).

(a)
XXXXXXXXXXActual

Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 0 70 0 0 70 0%
30-44 0 93 0 0 93 100%
45-60 0 86 0 0 86 0%
>60 0 82 0 0 82 0%
Total 0 331 0 0 331 Avg. rec. 25%
Precision 0% 28.1% 0% 0% Avg. prec. 7.02% Accuracy 28.1%

(b)
XXXXXXXXXXActual

Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 40 9 8 13 70 57.14%
30-44 13 49 12 19 93 52.69%
45-60 15 17 36 18 86 41.86%
>60 11 19 21 31 82 37.8%
Total 79 94 77 81 331 Avg. rec. 47.37%
Precision 50.63% 52.13% 46.75% 38.27% Avg. prec. 46.95% Accuracy 47.13%

(c)
XXXXXXXXXXActual

Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 41 20 9 0 70 58.57%
30-44 21 50 18 4 93 53.76%
45-60 28 24 32 2 86 37.21%
>60 30 30 12 10 82 12.2%
Total 120 124 71 16 331 Avg. rec. 40.43%
Precision 34.17% 40.32% 45.07% 62.5% Avg. prec. 45.51% Accuracy 40.18%

(d)
XXXXXXXXXXActual

Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 21 0 0 0 21 100%
30-44 0 23 0 0 23 100%
45-60 1 0 19 1 21 90.48%
>60 1 0 0 9 10 90%
Total 23 23 19 10 75 Avg. rec. 95.12%
Precision 91.3% 100% 100% 90% Avg. prec. 95.33% Accuracy 96%
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Figure 3: Comparison among different attack strategies in
terms of FPR and other metrics

5.5 False Positive Rates and Attack Stability

In order to demonstrate the false positive rate (FPR) com-
parison between our proposed attacks and the existing FJR-
MIA [17] strategy, we perform experiments with two sce-
narios: (1) estimating the ‘alcohol’ sensitive attribute in
the FiveThirtyEight dataset which has 80.3% positive class
marginal prior (i.e., alcohol=yes), and (2) estimating the ‘x-
movie’ sensitive attribute in the GSS dataset which has only
19.8% positive class marginal prior (i.e., x-movie=yes). Fig-
ure 3 shows the comparison among FJRMIA, CSMIA, and
LOMIA in terms of FPR and other metrics. The solid lines
represent the attack performances of estimating alcohol in the
FiveThirtyEight dataset whereas the dashed lines represent
the attack performances of estimating x-movie in the GSS
dataset. Since FJRMIA is heavily dependent on the marginal
priors of the sensitive attributes, it achieves extreme FPRs
in these two scenarios: 100% FPR in estimating alcohol and
4.17% FPR is estimating x-movie. In contrast, our proposed
attacks are more stable and their superior performance in both
scenarios are evident by the G-mean and MCC metrics in
Figure 3. The comparison of these attacks’ FPRs for Adult
dataset where the sensitive attribute is more balanced is given
in Table 15. The FPRs of our proposed attacks are comparable
to that of FJRMIA (⇠ 6% vs. ⇠ 3%). However, our attacks
outperform FJRMIA in terms of other metrics as shown in
Figures 2(c) and 7. Note that, lower FPR may not always
indicate better attack, e.g., NaiveA has an FPR of 0% but the

attack has no efficacy.

5.6 Distributional Privacy Leakage

In order to investigate if our MIAI attacks also breach the
privacy of data that is not in the training dataset of the target
model but is drawn from the same distribution, we evaluate
our attacks on the corresponding DSD datasets as described
in Section 5.1. Figure 9(c) compares the performance of our
attacks as well as the performance of FJRMIA on the decision
tree model trained on Adult dataset. Our observation shows
that our attacks are equally effective against the records in the
training dataset (DST ) and the records outside of the training
dataset but drawn from the same distribution (DSD). We
observe similar trends in the proposed attacks against other
target models as shown in Figure 9 in Appendix.

5.7 Disparate Vulnerability of MIAI Attacks

In this section, we further investigate the vulnerability of
model inversion attacks by analyzing the attack performances
on different groups in the dataset. If a particular group in
a dataset is more vulnerable to these attacks than others, it
raises serious privacy concerns for that particular group.

Figure 4(b) shows the contrast in the performances of LO-
MIA against different gender and race populations. The at-
tack is performed against the deepnet model trained on Adult
dataset. The x-axis represents gender/race identities along
with the number of records in the training dataset that belong
to the particular subgroups. For instance, the numbers of fe-
male and male individuals in the Adult dataset are 11,486
and 23,736, respectively. According to our observation, LO-
MIA could predict the correct marital status for 85.9% of
the female population whereas it could predict the correct
marital status for only 62.4% of the male population. LOMIA
also shows disparate attack performance against different
race groups, and is most successful against the Black race
subgroup with 78.2% accuracy. Since the attack model of
LOMIA is trained on DSA dataset obtained from the Case (1)
instances, we investigated what percentage of records of each
of the female and male subgroups are labeled with correct
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Figure 4: (a) Privacy leakage for DST and DSD, (b) disparate vulnerability of LOMIA for different gender and race groups.

sensitive attributes in DSA dataset and if that has any impact
on such disparate vulnerability. However, we observe that
around a similar percentage (⇠ 21%) of both female and male
records, i.e., 2593 and 4837, respectively, are labeled with the
correct sensitive attribute (single/married) in the DSA dataset,
which is shown using Correct Case (1) bar in Figure 4(b).
We also investigated if accuracy of target model for different
subgroups plays a role in disparate vulnerability, shown using
TM Accuracy bar in Figure 4(b). We observe that target model
is 92.4% accurate for the female population and only 81.4%
accurate for the male population in predicting their income,
which correlates with the disparate vulnerability. However,
we have not observed this correlation consistently, e.g., in
the case of disparate vulnerability for race subgroups. LO-
MIA shows disparate vulnerability against other subgroups,
such as religions (DT model trained on GSS dataset) and
occupations (DNN model trained on Adult dataset). The re-
sults are demonstrated in Appendix (see Figures 10 and 11
in Appendix A.3, respectively). Note that, we have observed
disparate-vulnerability across all datasets and models but re-
ported the most interesting results only.

The performance of an adversary with RandGA strategy
would not differ significantly for these different groups be-
cause of their random prediction. Due to the differences in the
underlying distributions of the married individuals in these
groups, the RandGA strategy would only show slightly dif-
ferent performance in terms of precision and thus in the F1
score. While our findings here show only a few instances of
such disparity in the model inversion attack performances on
different groups, this is a potentially serious issue and needs to
be further investigated. Otherwise, while it may seem that the
attack performance on the overall dataset is not a significant
threat, some specific groups in the dataset could still remain
significantly vulnerable to MIAI attacks.

5.8 Attack Results With Partial Knowledge of

Target Record’s Non-sensitive Attributes

With partial knowledge of target record’s non-sensitive at-
tributes, our LOMIA ensemble attack models handle the
missing attributes using last prediction strategy [30]. With
this strategy, the prediction is computed by descending the
branches of the tree according to the available input attributes.
When there is a question regarding the missing attribute, the
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Figure 5: LOMIA performance against the decision tree
model trained on Adult dataset when 1-9 non-sensitive at-
tributes (NSA) are unknown (u) to the adversary.

Table 5: Attack performance against the decision tree target
model trained on Adult dataset.

Target model Attack Strategy TP TN FP FN Precision Recall Accuracy F1 scoreclass label

<=50K
FJRMIA [17] 13 17108 13 9315 50% 0.14% 64.73% 0.28%
CSMIA 127 17018 103 9201 55.22% 1.36% 64.82% 2.66%
LOMIA 26 17085 36 9302 41.94% 0.28% 64.69% 0.55%

>50K
FJRMIA [17] 3775 710 498 3790 88.34% 49.9% 51.12% 63.78%
CSMIA 7537 67 1141 28 86.85% 99.63% 86.68% 92.8%
LOMIA 7548 47 1161 17 86.67% 99.78% 86.57% 92.76%

process stops and the prediction of the last node is returned.
Figure 5 shows the performance details of LOMIA against

the decision tree model trained on Adult dataset when 1-9
non-sensitive attributes (NSA) increasingly become unknown
(u) to the adversary in the following order: work-class, sex,
race, fnlwgt, occupation, education, hours-per-week, capital-
gain, and capital-loss. This order reflects the importance of the
Adult dataset attributes in the LOMIA attack model trained
against the decision tree target model (see Figure 12 (a)).
Since the ‘income’ attribute occupies 90.4% importance in the
LOMIA attack model, unavailability of 9 other non-sensitive
attributes does not degrade the performance of LOMIA. We
have observed similar LOMIA results against other target
models. Figures 12 (b), 13 (a), 13 (b) in Appendix show the
importance of the dataset attributes in the LOMIA attack mod-
els. Figures 14, 15, and 16 in Appendix show the performance
details of LOMIA, respectively.

These results not only show an increased vulnerability of

model inversion attacks but also escalate the practicability

of such attacks in the real world where the adversary may

not know all other attributes of a target record. Due to space
constraints, the performance details of the CSMIA partial
knowledge attack have been discussed in Appendix A.4.

11



5.9 Attacks’ Efficacy on Different Class La-

bels of Target Model

In this section, we aim to understand the efficacy of model
inversion attacks for different class labels of the target model
and focus on the decision tree model trained on Adult dataset.

Table 5 shows a comparison among FJRMIA [17], CSMIA,
and LOMIA performances for different class labels of the
target model. Note that, the attack performances are signifi-
cantly different for the two class labels, e.g., the recall values
of identifying ‘married’ individuals in class <=50K are signif-
icantly low when compared to the recall values of identifying
‘married’ individuals in class >50K. The precision values also
demonstrate disparate attack performances on these two target
model class labels.

5.10 Discussion and Limitation

To our knowledge, ours is the first work that studies MIAI
attacks in such details on tabular datasets which is the most
common data type used in real-world machine learning [27].
We discuss some of our notable findings in the following:
TIR vs. MIAI: As mentioned in Section 1, the TIR attacks
have strong correlations with the model’s predictive power.
This is because highly predictive models are able to establish
a strong correlation between features and labels, and this is
the property that an adversary exploits to mount the TIR at-
tacks [21]. However, we argue that such is not the case for
MIAI attacks. Table 8 in Appendix shows the confusion ma-
trix for the decision tree model trained on Adult dataset. From
the matrix, it is evident that the target model’s performance
(both precision and recall) is better for class label <= 50K

than that of for class label > 50K. If the root causes of MIAI
attacks were similar to that of TIR attacks, the attacks would
be more effective against the records of class label <= 50K.
On the contrary, in Section 5.9, we demonstrate that the MIAI
attacks (both existing and proposed) perform better against
the records of class label > 50K.
Importance of sensitive attribute in target model: As dis-
cussed in Section 5.4.2, the importances of sensitive attributes
in the corresponding target models trained on GSS and Adult
datasets do not differ significantly whereas the proposed MIAI
attacks against target models trained on Adult dataset are sig-
nificantly more effective than that of against the target models
trained on GSS dataset. This indicates that only controlling
the importance of the sensitive attributes in the target model
may not be always sufficient to reduce the risk of model in-
version attacks. We identify the difference in the distribution
of sensitive attributes in these datasets (Adult dataset 47.9%
positive class vs. GSS dataset 19.8% positive class) as a factor
that has contributed to this attack performance difference. We
leave investigating this and other factors to future work.
Disparate vulnerability: We have investigated correct Case
(1) percentage and target model accuracy for different sub-
groups as possible factors behind disparate vulnerability. It

is evident that further investigation is required to better un-
derstand the disparate impact on different groups of records
which is a serious threat of model inversion attacks.
Distributional privacy breach: Existing research [18, 21]
shows that differential privacy (DP)-based defense mecha-
nisms against model inversion attacks suffer from significant
loss of model utility. Moreover, DP mechanisms provide pri-
vacy guarantees to only the training data records. In con-
trast, our experiments show that model inversion attacks not
only breach the privacy of sensitive training dataset but also
leaks distributional privacy. Therefore, the effectiveness of
DP mechanisms against model inversion attacks needs further
investigation.
Limitations: Attribute inference attack is not a realistic threat
when a dataset has a lot of attributes, since model prediction
is likely to depend very little on each individual attribute.
Therefore, in this paper, we study the MIAI attacks only on
datasets with fewer attributes.

6 Related Work

In [18], Fredrikson et al. introduced the concept of model
inversion attacks and applied their attack to linear regression
models. In [17], Fredrikson et al. extended their attack so
that it could also be applicable to non-linear models, such as
decision trees. The later work presents two types of applica-
tions of the model inversion attack. The first one assumes an
adversary who has access to a model (for querying) and aims
to learn the sensitive attributes in the dataset that has been
used to train that model (also known as attribute inference at-
tack). In the second setting, the adversary aims to reconstruct
instances similar to ones in the training dataset using gradient
descent. Particularly, their attack generates images similar to
faces used to train a facial recognition model. As mentioned
earlier, we focus on the first one, i.e., attribute inference at-
tack. Subsequently, Wu et al. [33] presented a methodology
to formalize the model inversion attack.

A number of attribute inference attacks have been shown
to be effective in different domains, such as social me-
dia [22, 23, 34–38] and recommender systems [39, 40]. In the
case of social media, the adversary infers the private attributes
of a user (e.g., gender, political views, locations visited) by
leveraging the knowledge of other attributes of that same user
that are shared publicly (e.g., list of pages liked by the user,
etc). The adversary first trains a machine learning classifier
that takes as input the public attributes and then outputs the
private attributes. However, in order to build such a classifier,
these attacks [22, 23, 34–38] have to rely on social media
users who also make their private attributes public. There-
fore, the adversary’s machine learning classifier can be built
only in those scenarios where it can collect the private-public
attribute pairs of real users. Also, for the attacks shown in
the recommender systems [39], at first, the adversary has to
collect data of the users who also share their private attributes

12



(e.g., gender) publicly along with their public rating scores
(e.g., movie ratings). In contrast to the adversaries assumed in
these attacks [22, 23, 34–39], the adversaries assumed in our
attacks are not assumed to be able to obtain a dataset from
the same population the DST dataset has been obtained from.
This is because in many scenarios such an assumption (ad-
versary having access to a similar dataset) may not be valid.
Therefore, while designing our attacks, it has been part of
our goal to incorporate these practical scenarios in our attack
surface so that our proposed attacks could be applied more
widely.

Shokri et al. [41] investigate whether transparency of ma-
chine learning models conflicts with privacy and demonstrate
that record-based explanations of machine learning models
can be effectively exploited by an adversary to reconstruct
the training dataset. In their setting, the adversary can gen-
erate unlimited transparency queries and for each query, the
adversary is assumed to get in return some of the original
training dataset records (that are related to the queries) as part
of the transparency report. He et al. [42] devise a new set of
model inversion attacks against collaborative inference where
a deep neural network and the corresponding inference task
are distributed among different participants. The adversary,
as a malicious participant, can accurately recover an arbitrary
input fed into the model, even if it has no access to other
participants’ data or computations, or to prediction APIs to
query the model.

Most of the work mentioned above assume that the at-
tributes of a target individual, except the sensitive attribute,
are known to the adversary. Hidano et al. [43] proposed a
method to infer the sensitive attributes without the knowledge
of non-sensitive attributes. However, they consider an online
machine learning model and assume that the adversary has the
capability to poison the model with malicious training data.
In contrast, our model inversion attack with partial knowledge
of target individual’s non-sensitive attributes does not require
poisoning and performs similar to scenarios where the adver-
sary has full knowledge of target individual’s non-sensitive
attributes.

Zhang et al. [21] present a generative model-inversion at-
tack to invert deep neural networks. They demonstrate the
effectiveness of their attack by reconstructing face images
from a state-of-the-art face recognition classifier. They also
prove that a model’s predictive power and its vulnerability
to inversion attacks are closely related, i.e., highly predictive
models are more vulnerable to inversion attacks. Aïvodji et
al. [19] introduce a new black-box model inversion attack
framework, GAMIN (Generative Adversarial Model INver-
sion), based on the continuous training of a surrogate model
for the target model and evaluate their attacks on convolu-
tional neural networks. In [20], Yang et al. train a second
neural network that acts as the inverse of the target model
while assuming partial knowledge about the target model’s
training data. The objective of the works mentioned above

is typical instance reconstruction (TIR), i.e., similar to the
second attack mentioned in [17].

7 Conclusion and Future Work

In this paper, we demonstrate two new black-box model in-
version attribute inference (MIAI) attacks: (1) confidence
score-based attack (CSMIA) and (2) label-only attack (LO-
MIA). The CSMIA strategy assumes that the adversary has
access to the target model’s confidence scores whereas the
LOMIA strategy assumes the adversary’s access to the la-
bel predictions only. Despite access to only the labels, our
label-only attack performs on par with the proposed confi-
dence score-based MIAI attack. Along with accuracy and F1
score, we propose to use the G-mean and Matthews correla-
tion coefficient (MCC) metrics in order to ensure effective
evaluation of our attacks as well as the state-of-the-art attacks.
We perform an extensive evaluation of our attacks using two
types of machine learning models, decision tree and deep neu-
ral network, that are trained with three real datasets [24–26].
Our evaluation results show that the proposed attacks signifi-
cantly outperform the existing ones. Moreover, we empirically
show that model inversion attacks have disparate vulnerability
property and consequently, a particular subset of the training
dataset (grouped by attributes, such as gender, race, religion,
etc.) could be more vulnerable than others to the model in-
version attacks. We also evaluate the risks incurred by model
inversion attacks when the adversary does not have knowl-
edge of all other non-sensitive attributes of the target record
and demonstrate that our attack’s performance is not impacted
significantly in those scenarios. Finally, we empirically show
that the MIAI attacks not only breach the privacy of a model’s
training data but also compromise distributional privacy.

Since the defense methods designed to mitigate recon-
struction of instances resembling those used in the training
dataset (TIR attacks) [44, 45] do not directly apply to our
MIAI attack setting, exploring new defense methods would
be an interesting direction for future work. Moreover, defense
mechanisms [17] that perturb confidence scores but leave the
model’s predicted labels unchanged are ineffective against
our label-only attack. Therefore, designing effective defense
methods that protect privacy against our label-only MIAI at-
tack without degrading the target model’s performance is left
as future work.
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Availability

The original datasets, target models, attack model datasets,
and attack models are (anonymously) available in the follow-
ing links:

• GSS dataset:
https://bigml.com/shared/dataset/
gF5aUaBFNQ7QYNepUUg29a4Q2Lt

Target models trained on GSS dataset:

– Decision tree model:
https://bigml.com/shared/model/
hBwXZNtvSBvJeRSLUxllA3wmrmU

– Deep neural network model:
https://bigml.com/shared/deepnet/
fx0ZgPycSuYr8QkUpezPCYMoRem

• Adult dataset:
https://bigml.com/shared/dataset/
l5DJvrXmPUnhBji9j8RrWpb7Mi6

Target models trained on Adult dataset:

– Decision tree model:
https://bigml.com/shared/model/
1dI4W7rI8HB7yyWbUrWZzsAbZ95

– Deep neural network model:
https://bigml.com/shared/deepnet/
9HLcs6E9dveUHCL3Ca9pg92hPmx

• FiveThirtyEight dataset:
https://bigml.com/shared/dataset/
olFKJwZptAzdtugydSYza2TdDRN

Target models trained on FiveThirtyEight dataset:

– Decision tree model:
https://bigml.com/shared/model/
oX9NQBIlzJ7q4p0TE9Z5zoPegNh

– Deep neural network model:
https://bigml.com/shared/deepnet/
3tk8ySX8J6VSqdWFYtBAAmuzLEr

• Attack dataset obtained from the decision tree target
model trained on GSS dataset and the corresponding
ensemble attack model:

– Attack dataset:
https://bigml.com/shared/dataset/
wNguK1uWFsbFEXSMiODpdX4jlJc

– Ensemble attack model:
https://bigml.com/shared/ensemble/
9K9VffUC0ADjGmqROospSIAzY91

• Attack dataset obtained from the deep neural network
target model trained on GSS dataset and the correspond-
ing ensemble attack model:

– Attack dataset:
https://bigml.com/shared/dataset/
zu1hnA8nsECntgxMKa07mOVacnc

– Ensemble attack model:
https://bigml.com/shared/ensemble/
razFkSOUzaxeexpVDeGSlYSEXQu

• Attack dataset obtained from the decision tree target
model trained on Adult dataset and the corresponding
ensemble attack model:

– Attack dataset:
https://bigml.com/shared/dataset/
kvTpvptS1Hczj8Pgh4Iclr95h1m

– Ensemble attack model:
https://bigml.com/shared/ensemble/
jtAzcMkyIpFoXtfp6Rr8Ol6NNSi

• Attack dataset obtained from the deep neural network
target model trained on Adult dataset and the corre-
sponding ensemble attack model:

– Attack dataset:
https://bigml.com/shared/dataset/
beAzpCmxYSwhvjIdqA9MvLJCgzo

– Ensemble attack model:
https://bigml.com/shared/ensemble/
danhxLiChOIC19qUfBBNXfv4FuM

• Attack dataset obtained from the decision tree target
model trained on FiveThirtyEight dataset and the
corresponding ensemble attack model:

– Attack dataset:
https://bigml.com/shared/dataset/
hjKe5C63b1cOoROW7ufs0QPWHPY

– Ensemble attack model:
https://bigml.com/shared/ensemble/
ikQ5bwBYPinGaI6ASAeu10RPvnM
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• Attack dataset obtained from the deep neural network
target model trained on FiveThirtyEight dataset and the
corresponding ensemble attack model:

– Attack dataset:
https://bigml.com/shared/dataset/
c2wVKvpEIlWfQveRqKncSzUEjlA

– Ensemble attack model:
https://bigml.com/shared/ensemble/
3QODgBv2xkSOc7qJzJ9ZYsEqTv6

A Appendix

A.1 Random Guessing Attack Performances

In this attack, the adversary randomly predicts the sensitive
attribute by setting a probability for the positive class sensi-
tive attribute value. Fig. 6(a) shows the optimal performance
of random guessing attack when the marginal prior of the
positive class sensitive attribute is 0.3 and the adversary sets
different probabilities to predict the positive class sensitive
attribute value (probabilities in x-axis). As shown in the fig-
ure, the maximum G-mean a random guessing attack can
achieve is 50%, independent of the knowledge of marginal
prior. The precision for predicting the positive class sensi-
tive attribute is constant and equals the marginal prior of that
class as long as the set probability is > 0. This is because
when the attack randomly assigns positive class label to the
records, approximately 30% of those records’ sensitive at-
tributes would turn out to be originally positive according
to the marginal prior of the positive class sensitive attribute
which is 0.3. The recall of random guessing attack increases
with the probability set to predict the positive class sensitive
attribute. For example, if the adversary reports all the records’
sensitive attributes as positive, there is no false negative left
and thus recall reaches 100%. Figures 6(b) and 6(c) show
the performance of random guessing attack on the GSS and
Adult datasets, respectively, when the adversary sets differ-
ent probability values to predict the positive class sensitive
attribute. As shown in Figures 6(a), 6(b), and 6(c), the MCC
of the random guessing attacks is always 0.

A.2 CSMIA With Partial Knowledge of Non-

sensitive Attributes

For simplicity, we assume that there is only one non-sensitive
attribute that is unknown to the adversary. Extending our
attack steps to more than one unknown attribute is straightfor-
ward. Without loss of generality, let x2 2 x be the non-sensitive
attribute unknown to the adversary.

Let u be the number of unique possible values of x2. We
query the model by varying the unknown non-sensitive at-
tribute with its different unique possible values (in the same

way we vary the sensitive attribute x1 in the attacks de-
scribed in Section 4) while all other known non-sensitive at-
tributes {x3, ...,xd} remain the same. When the non-sensitive
attributes are continuous, we use binning to put them into cat-
egories just like we did for sensitive attributes. Hence, in this
attack, we query the model u times for each possible value
of the sensitive attribute. As a result, the complexity of the
attacks described in this section is u times the complexity of
the attacks in Section 4.

According to the notations used in Section 4, let
C0=Âu

i=1(y = y
0
0_i
) be the number of times the predictions are

correct with the sensitive attribute no and C1=Âu

i=1(y = y
0
1_i
)

be the number of times the predictions are correct with the
sensitive attribute yes.

In order to determine the value of x1, this attack considers
the following cases:

Case (1) If C0 != C1, i.e., the number of correct target
model predictions are different for different sensitive attribute
values, the attack selects the sensitive attribute to be the one
for which the number of correct predictions is higher. For
instance, if C1 > C0, the attack predicts yes for the sensitive
attribute and vice versa.

Case (2) If C0 = C1 and both are non-zero, we compute
the sum of the confidence scores (only for the correct pre-
dictions) for each sensitive attribute and the attack selects
the sensitive attribute to be the one for which the sum of the
confidence scores is the maximum.

Case (3) If C0 = 0 ^ C1 = 0, we compute the sum of the
confidence scores for each sensitive attribute and the attack
selects the sensitive attribute to be the one for which the sum
of the confidence scores is the minimum.

If there is a second non-sensitive attribute that is unknown
to the adversary (let that unknown attribute be x3) and v is
the number of unique possible values for that unknown non-
sensitive attribute, we query the model by varying both x2 and
x3 while all other known non-sensitive attributes {x4, ...,xd}
remain the same. Hence, in this attack, we query the model
u⇤ v times for each possible value of the sensitive attribute.
As a result, the complexity of the attack becomes u⇤ v times
the complexity of the attacks in Section 4.

A.3 Disparate Vulnerability of Model Inver-

sion Attack

Fig. 10 and 11 show the contrast in the performances of LO-
MIA against different religion and occupation populations.
The attacks are performed against the decision tree model
trained on GSS dataset and the deepnet model trained on
Adult dataset, respectively. The x-axis represents religion and
occupation populations along with the number of records in
the training dataset that belong to the particular subgroups.
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(b) GSS dataset where the marginal prior of the pos-
itive class attribute is 0.197.
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(c) Adult dataset where the marginal prior of the
positive class attribute is 0.479.

Figure 6: Random guessing attack performances for different marginal priors of the positive class sensitive attribute value.
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Figure 7: Comparison of attacks: FJRMIA [17], CSMIA, and
LOMIA with baseline attack strategies NaiveA and RandGA
against Deepnet model trained on Adult dataset.

The results show that certain religion and occupation sub-
groups are more vulnerable to model inversion attacks than
others.

A.4 CSMIA Results With Partial Knowl-

edge of Target Record’s Non-sensitive At-

tributes

Excluding the sensitive attribute (‘marital status’) and the
output of the target model (‘income’), we first consider each
of the remaining (non-sensitive) attributes to be unknown to
the adversary once at a time, i.e., denoting those as x2. Fig-
ure 17 shows the performance of CSMIA on the decision
tree target model trained on the Adult dataset when some
of the non-sensitive attributes are unknown to the adversary.
The x-axis shows the non-sensitive attributes that are un-
known. The attributes are sorted (from left to right) according
to their importance in the model, a parameter computed by
BigML. We also present the original results (i.e., when none

of the non-sensitive attributes is unknown to the adversary) to
compare how the partial knowledge of the target individual’s

non-sensitive attributes impacts our attacks’ performances.
As demonstrated in Figure 17, we observe that the perfor-
mance of our attack does not deteriorate and remains almost
the same when some of the non-sensitive attributes are un-
known to the adversary, independent of the importance of the
attributes in the target model. We observe only slightly lower
precision (and slightly higher recall) when the ‘capital-loss’
attribute is unknown to the adversary. We also perform ex-
periments where a combination of non-sensitive attributes
are unknown to the adversary– ‘occupation and capital-gain’
(combined importance 37.8%), ‘occupation and hours-per-
week’ (combined importance 33.3%), and ‘occupation and
capital-loss’ (combined importance 30.4%). As demonstrated
in Figure 17, our attack does not show any significant deteri-
oration. Table 26 shows the number of queries to the target
model for the above experiments. Due to the combinatorial
complexity of our CSMIA partial knowledge attack, we limit
the number of unknown non-sensitive attributes to two for
these experiments.

Fig. 18 shows the performance of our confidence score-
based attack on the deep neural network target model trained
on the Adult dataset when some of the non-sensitive attributes
are unknown to the adversary. The x-axis shows the non-
sensitive attribute that is unknown. The attributes are sorted
(from left to right) according to their importance in the model.
We also present the original results (i.e., when none of the
non-sensitive attributes is unknown to the adversary) to com-
pare how the partial knowledge of the target individual’s non-
sensitive attributes impacts our attacks’ performances. As
demonstrated in the figure, we observe that the performances
of our attack do not deteriorate and remain almost the same
when some of the non-sensitive attributes are unknown to the
adversary, independent of the importance of the attributes in
the target model.
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Figure 8: Importance of GSS and Adult dataset attributes in their corresponding decision tree target models.
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Figure 9: Privacy leakage for DST and DSD: against (a) deepnet target model trained on Adult dataset, (b) decision tree target
model trained on GSS dataset, and (c) deepnet target model trained on GSS dataset.

A.5 Number of Queries’ Comparison Among

Attacks

We present the query numbers for different attacks on different
datasets in Table 25. For each attack experiment, all three at-
tacks perform the same number of queries to the target model.
GSS DST dataset has 15235 instances and sensitive attribute
x_movie has two possible values. Therefore, the total number
of queries for all attacks in this dataset is 15235x2=30470.
The total number of queries for estimating the single sensitive
attributes in Adult and FiveThirtyEight datasets are calculated
similarly. For multiple sensitive attribute inference, i.e., esti-
mating age group and alcohol in FiveThirtyEight dataset, we
consider one sensitive attribute to be missing [30] and query
the target model with all possible values of the other sensi-
tive attribute. Therefore, the total number of queries while
simultaneously estimating age group and alcohol sensitive
attributes is 331x(4+2)=1986.
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Figure 10: Disparate vulnerability of LOMIA for different religion groups. The results represent attack on the decision tree target
model trained on GSS dataset.
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Figure 11: Disparate vulnerability of LOMIA for different occupation groups. The results represent attack on the deepnet target
model trained on Adult dataset.
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(a) Adult dataset attributes’ importance in the LOMIA attack model
trained against the decision tree target model
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Figure 12: Importance of Adult dataset attributes in the LOMIA attack models trained against the decision tree and deepnet target
models, respectively. Note that, the income attribute occupies 100% importance in the LOMIA attack model trained against the
deepnet target model.
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Table 6: Confusion matrix of decision tree target model trained on GSS dataset.
XXXXXXXXXXActual

Predicted Not too happy Pretty happy Very happy Total Recall

Not too happy 5 63 370 438 1.14%
Pretty happy 0 813 4178 4991 16.29%
Very happy 0 526 9280 9806 94.64%
Total 5 1402 13828 15235 Avg. recall 37.36%
Precision 100% 57.99% 67.11% Avg. precision 75.03% Accuracy 66.28%

Table 7: Confusion matrix of deepnet target model trained on GSS dataset.XXXXXXXXXXActual
Predicted Not too happy Pretty happy Very happy Total Recall

Not too happy 1 102 335 438 0.23%
Pretty happy 0 565 4426 4991 11.32%
Very happy 0 598 9208 9806 93.90%
Total 1 1265 13969 15235 Avg. recall 35.15%
Precision 100% 44.66% 65.92% Avg. precision 70.19% Accuracy 64.16%

Table 8: Confusion matrix of decision tree target model trained on Adult dataset.XXXXXXXXXXActual
Predicted <=50K >50K Total Recall

<=50K 24912 1537 26449 94.19%
>50K 3343 5430 8773 61.89%
Total 28255 6967 35222 Avg. recall 78.04%
Precision 88.17% 77.94% Avg. precision 83.05% Accuracy 86.15%

Table 9: Confusion matrix of deepnet target model trained on Adult dataset.XXXXXXXXXXActual
Predicted <=50K >50K Total Recall

<=50K 24433 2016 26449 92.38%
>50K 3276 5497 8773 62.66%
Total 27709 7513 35222 Avg. recall 77.52%
Precision 88.18% 73.17% Avg. precision 80.67% Accuracy 84.97%

Table 10: Confusion matrix of decision tree target model trained on FiveThirtyEight dataset.XXXXXXXXXXActual
Predicted Medium Medium Well Medium Rare Rare Well Total Recall

Medium 105 0 3 0 1 109 96.33%
Medium Well 0 55 1 0 0 56 98.21%
Medium Rare 3 1 122 1 1 128 95.31%
Rare 0 1 0 17 0 18 94.44%
Well 0 0 0 0 20 20 100%
Total 108 57 126 18 22 331 Avg. Recall 96.86%
Precision 97.22% 96.49% 96.83% 94.44% 90.91% Avg. Precision 95.18% Accuracy 96.37%

Table 11: Confusion matrix of deepnet target model trained on FiveThirtyEight dataset.XXXXXXXXXXActual
Predicted Medium Medium Well Medium Rare Rare Well Total Recall

Medium 9 0 95 5 0 109 8.26%
Medium Well 10 0 42 4 0 56 0.00%
Medium Rare 12 0 104 11 1 128 81.25%
Rare 2 0 15 1 0 18 5.56%
Well 3 0 13 4 0 20 0.00%
Total 36 0 269 25 1 331 Avg. Recall 19.01%
Precision 25.00% 0.00% 38.66% 4.00% 0.00% Avg. Precision 13.53% Accuracy 34.44%
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Table 12: Attack performance against the DT and DNN target models trained on GSS dataset.

Target Model Attack Strategy TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC FPR
DT/DNN NaiveA 0 12218 0 3017 0% 0% 80.2% 0% 0% 0% 0%
DT FJRMIA [17] 131 11709 509 2886 20.47% 4.34% 77.72% 7.16% 20.39% 0.3% 4.17%
DT CSMIA 1490 7844 4373 1528 25.41% 49.37% 61.27% 33.55% 56.3% 11.1% 35.79%
DT LOMIA 1782 5565 6653 1235 21.13% 59.07% 48.22% 31.12% 51.87% 3.7% 54.45%
DNN FJRMIA [17] 1 12213 5 3016 16.67% 0.03% 80.17% 0.07% 1.82% �0.2% 0.04%
DNN CSMIA 1212 8058 4160 1805 22.56% 40.17% 60.85% 28.89% 51.47% 5.1% 34.05%
DNN LOMIA 1225 8015 4203 1792 22.57% 40.6% 60.65% 29.01% 51.61% 5.16% 34.4%

Table 13: Our proposed attacks’ performance details against the decision tree target model trained on GSS dataset.

Attack Case TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
Confidence score-based attack (1) 219 1336 698 134 23.88% 62.04% 65.14% 34.49% 63.83% 20.2%
Label-only attack 219 1337 697 134 23.91% 62.04% 65.19% 34.52% 63.86% 20.3%
Confidence score-based attack (2) 661 4466 2409 1007 21.53% 39.63% 60.01% 27.91% 50.74% 3.8%
Label-only attack 1227 1848 5028 440 19.61% 73.61% 36% 30.98% 44.48% 0.4%
Confidence score-based attack (3) 610 2042 1266 387 32.52% 61.18% 61.61% 42.46% 61.46% 19.5%
Label-only attack 336 2380 928 661 26.58% 33.7% 63.09% 29.72% 49.24% 5.2%

Table 14: Our proposed attacks’ performance details against the deep neural network target model trained on GSS dataset.
Attack Case TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
Confidence score-based attack (1) 96 468 317 130 23.24% 42.48% 55.79% 30.05% 50.32% 1.8%
Label-only attack 96 469 316 130 23.3% 42.48% 55.89% 30.09% 50.38% 1.9%
Confidence score-based attack (2) 55 7339 205 1611 21.15% 3.3% 80.28% 5.71% 17.92% 1.4%
Label-only attack 94 7166 378 1572 19.92% 5.64% 78.83% 8.79% 23.15% 1.1%
Confidence score-based attack (3) 1061 251 3638 64 22.58% 94.31% 26.17% 36.44% 24.67% 1.3%
Label-only attack 1035 380 3509 90 22.78% 92% 28.22% 36.51% 29.98% 2.5%

Table 15: Attack performance against the DT and DNN target models trained on Adult dataset.

Target Model Attack Strategy TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC FPR
DT/DNN NaiveA 0 18329 0 16893 0% 0% 52.04% 0% 0% 0% 0%
DT FJRMIA [17] 3788 17818 511 13105 88.11% 22.42% 61.34% 35.75% 46.69% 29.9% 2.79%
DT CSMIA 7664 17085 1244 9229 86.04% 45.37% 70.27% 59.41% 65.03% 44.3% 6.79%
DT LOMIA 7574 17132 1197 9319 86.35% 44.84% 70.14% 59.02% 64.74% 44.3% 6.53%
DNN FJRMIA [17] 3592 17717 612 13301 85.44% 21.26% 60.5% 34.05% 45.34% 27.6% 3.34%
DNN CSMIA 7490 17139 1190 9403 86.29% 44.34% 69.93% 58.58% 64.39% 43.9% 6.49%
DNN LOMIA 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.2% 6.59%

Table 16: Our proposed attacks’ performance details against the decision tree target model trained on Adult dataset.

Attack Case TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
Confidence score-based attack (1) 3788 3466 511 1498 88.11% 71.66% 78.31% 79.04% 79.03% 58.4%
Label-only attack 3787 3466 511 1499 88.11% 71.64% 78.3% 79.03% 79.02% 58.4%
Confidence score-based attack (2) 1375 13560 456 7697 75.09% 15.16% 64.68% 25.22% 38.29% 21.5%
Label-only attack 1275 13626 390 7797 76.58% 14.05% 64.54% 23.75% 36.96% 21.3%
Confidence score-based attack (3) 2501 59 277 34 90.03% 98.66% 89.17% 94.15% 41.62% 29.5%
Label-only attack 2512 40 296 23 89.46% 99.09% 88.89% 94.03% 34.35% 24.1%

Table 17: Our proposed attacks’ performance details against the deep neural network target model trained on Adult dataset.
Attack Case TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
Confidence score-based attack (1) 3592 3838 612 1918 85.44% 65.19% 74.6% 73.96% 74.98% 51.8%
Label-only attack 3592 3838 612 1918 85.44% 65.19% 74.6% 73.96% 74.98% 51.8%
Confidence score-based attack (2) 1467 13235 344 7454 81.01% 16.44% 65.34% 27.34% 40.03% 25%
Label-only attack 1542 13216 363 7379 80.94% 17.29% 65.59% 28.49% 41.02% 25.7%
Confidence score-based attack (3) 2431 66 234 31 91.22% 98.74% 90.41% 94.83% 46.61% 35.1%
Label-only attack 2431 67 233 31 91.25% 98.74% 90.44% 94.85% 46.96% 35.4%
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against the deepnet target model

Figure 13: Importance of GSS dataset attributes in the LOMIA attack models trained against the decision tree and deepnet target
models, respectively.
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Figure 14: LOMIA performance against the deepnet model trained on Adult dataset when 1-9 non-sensitive attributes (NSA)
increasingly become unknown (u) to the adversary in the following order: work-class, sex, race, fnlwgt, occupation, education,
hours-per-week, capital-gain, and capital-loss. See Figure 12 (b) for order.
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Figure 15: LOMIA performance against the decision tree model trained on GSS dataset when 1-9 non-sensitive attributes (NSA)
are unknown (u) to the adversary in the following order: divorce, race, religion, sex, education, age, year, number-of-children,
and porn-law. See Figure 13 (a) for order.
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Figure 16: LOMIA performance against the deepnet model trained on GSS dataset when 1-9 non-sensitive attributes (NSA) are
unknown (u) to the adversary in the following order: divorce, year, sex, age, number-of-children, race, religion, porn-law, and
education. See Figure 13 (b) for order.
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Figure 17: CSMIA performance against the decision tree model trained on Adult dataset when some of the other (non-sensitive)
attributes of a target individual are also unknown to the adversary.
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Figure 18: CSMIA performance against the deep neural network model trained on Adult dataset when some of the other
(non-sensitive) attributes of a target individual are also unknown to the adversary.
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Table 18: Confusion matrix of FJRMIA on decision tree target model trained on FiveThirtyEight dataset (inferring multiple
sensitive attributes: age and alcohol)

XXXXXXXXXXActual
Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 0 64 0 6 70 0%
30-44 0 88 0 5 93 94.62%
45-60 0 84 0 2 86 0%
>60 0 77 0 5 82 6.1%
Total 0 313 0 18 331 Avg. recall 25.18%
Precision 0% 28.12% 0% 27.78% Avg. precision 13.97% Accuracy 28.1%

Table 19: Confusion matrix of CSMIA on decision tree target model trained on FiveThirtyEight dataset (inferring multiple
sensitive attributes: age and alcohol)

XXXXXXXXXXActual
Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 35 12 7 16 70 0.5%
30-44 14 52 12 15 93 55.91%
45-60 16 14 36 20 86 41.86%
>60 16 24 17 25 82 30.49%
Total 81 102 72 76 331 Avg. recall 44.57%
Precision 43.21% 50.98% 50% 32.89% Avg. precision 44.27% Accuracy 44.71%

Table 20: Confusion matrix of LOMIA on decision tree target model trained on FiveThirtyEight dataset (inferring multiple
sensitive attributes: age and alcohol)

XXXXXXXXXXActual
Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 33 23 13 1 70 47.14%
30-44 24 48 15 6 93 51.61%
45-60 19 29 33 5 86 38.37%
>60 21 34 15 12 82 14.63%
Total 97 134 76 24 331 Avg. recall 37.94%
Precision 34.02% 35.82% 43.42% 50% Avg. precision 40.82% Accuracy 38.07%

Table 21: Confusion matrix of CSMIA (Case 1) on decision tree target model trained on FiveThirtyEight dataset (inferring
multiple sensitive attributes: age and alcohol)

XXXXXXXXXXActual
Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 16 0 0 0 16 100%
30-44 0 18 0 1 19 94.74%
45-60 1 0 17 1 19 89.47%
>60 1 1 0 6 8 75%
Total 18 19 17 8 62 Avg. recall 89.8%
Precision 88.89% 94.74% 100% 75% Avg. precision 89.66% Accuracy 91.94%

Table 22: Confusion matrix of LOMIA (Case 1) on decision tree target model trained on FiveThirtyEight dataset (inferring
multiple sensitive attributes: age and alcohol)

XXXXXXXXXXActual
Predicted 18-29 30-44 45-60 >60 Total Recall

18-29 15 1 0 0 16 93.75%
30-44 0 18 0 1 19 94.74%
45-60 1 0 16 2 19 84.21%
>60 1 1 0 6 8 75%
Total 17 20 16 9 62 Avg. recall 86.92%
Precision 88.24% 90% 100% 66.67% Avg. precision 86.23% Accuracy 88.71%
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Table 23: Inferring the sensitive attribute alcohol, attack performances against the decision tree target model trained on FiveThir-
tyEight dataset (adversary also estimates the age group sensitive attribute).

Attack Strategy TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [17] 256 5 60 10 81.01% 96.24% 78.85% 87.97% 27.21% 7.51%
CSMIA 151 34 31 115 82.97% 56.77% 55.89% 67.41% 54.49% 7.25%
LOMIA 192 19 46 74 80.67% 72.18% 63.75% 76.19% 45.93% 1.25%

Table 24: Inferring the sensitive attribute alcohol, attack performances against the decision tree target model trained on FiveThir-
tyEight dataset

Attack Strategy TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [17] 266 0 65 0 80.36% 100.00% 80.36% 89.11% 0.00% 0.00%
CSMIA 137 40 25 129 84.57% 51.50% 53.47% 64.02% 56.30% 10.36%
LOMIA 198 28 37 68 84.26% 74.44% 68.28% 79.04% 56.63% 15.33%

Table 25: Query Numbers for Different Attacks

Attack Strategy GSS (x-movie), Adult (marital-status), Fivethirtyeight (alcohol), Fivethirtyeight (age-group), Fivethirtyeight (age-group
Section 5.4.1 Section 5.4.2 Section 5.5 Section 5.4.3 (i) and alcohol), Section 5.4.3 (ii)

FJRMIA 30470 70444 662 1324 1986
CSMIA 30470 70444 662 1324 1986
LOMIA 30470 70444 662 1324 1986

Table 26: Number of queries to target model for CSMIA partial knowledge attack on decision tree target model trained on Adult
dataset (Figure 17).

Missing attribute(s) Number of queries to target model
Occupation 986216
Capital-gain 8453280
Hours-per-week 6762624
Capital-loss 6621736
Education 211332
Work-class 493108
Race 352220
Sex 140888
None 70444
Occupation, Capital-gain 118345920
Occupation, Hours-per-week 94676736
Occupation, Capital-loss 92704304
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