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Abstract—In this paper, we study model inversion attribute
inference (MIAI), a machine learning (ML) privacy attack that
aims to infer sensitive information about the training data given
access to the target ML model. We design a novel black-box MIAI
attack that assumes the least adversary knowledge/capabilities
to date while still performing similarly to the state-of-the-art
attacks. Further, we extensively analyze the disparate vulnerability
property of our proposed MIAI attack, i.e., elevated vulnera-
bilities of specific groups in the training dataset (grouped by
gender, race, etc.) to model inversion attacks. First, we investigate
existing ML privacy defense techniques– (1) mutual information
regularization, and (2) fairness constraints, and show that none
of these techniques can mitigate MIAI disparity. Second, we
empirically identify possible disparity factors and discuss po-
tential ways to mitigate disparity in MIAI attacks. Finally, we
demonstrate our findings by extensively evaluating our attack
in estimating binary and multi-class sensitive attributes on three
different target models trained on three real datasets.

Index Terms—model inversion attribute inference, privacy,
disparate vulnerability

I. INTRODUCTION

In recent years, machine learning (ML) has become very
popular because of its wide range of applications in real-life,
including speech and speaker recognition [1], predictive mod-
eling [2], medical diagnosis [3], [4], and image analysis [5],
[6]. These increasing applications have introduced new ways
for attack vectors to perform privacy attacks [7]. Among the
different existing privacy attacks against ML models, e.g.,
membership inference [8], model extraction [9], and prop-
erty inference [7], model inversion attribute inference attack
(MIAI) is comparatively under-explored and more challenging
due to its inherent characteristics [10]. Although some research
has focused on attribute inference in different contexts, e.g.,
in social media [11], these studies do not specifically focus
on ML privacy or model inversion vulnerability. In an MIAI
attack, the adversary leverages its access to the target model
to infer sensitive attributes in the training instances of the
target ML model [2], [12]. For instance, a social survey
(e.g., National Longitudinal Surveys) dataset to model how
individuals rate their lives may also include their responses to
questions on sensitive topics, such as drug usage behavior,
sexual activities, etc. If an attacker knows the background
information of a target individual and can also infer some
sensitive features of that target individual by querying the ML
model that predicts life ratings, a significant privacy violation
could occur. In-depth analysis of the vulnerabilities of model

inversion attacks in the domain of tabular datasets [2], [3],
[12] is even less studied.

State-of-the-art MIAI attacks in the literature consider
strong adversarial capabilities [3], [12], e.g., access to the
target model’s confusion matrix, marginal priors, knowledge of
all training instances’ non-sensitive attribute values, possible
values of sensitive attribute, ground truth labels of all training
data instances, etc. These capabilities are not only stronger
assumptions but also might not always prevail in the real
world. For example, an adversary might not have access to the
ground truth labels (e.g., unlabeled data in the unsupervised
learning scenario like anomaly detection), might not know all
non-sensitive attribute values of individual training instances,
or even might not know the training data confusion matrix.
These limitations are crucial challenges to existing MIAI
attacks in the literature and restrict the applicability of these
attacks to a more practical scenario. Therefore, in our work, we
explore the following research question: How can we design
an effective MIAI attack with the least adversarial capabilities
in a more realistic scenario? We define least capabilities as
being able to only (i) query the black-box target model and
obtain only the prediction labels (not confidence scores), and
(ii) have knowledge of possible values of sensitive and non-
sensitive attributes (however, no information about individual
training instances). A real-life scenario of our attack can be
the Amazon Fraud Detector API [13] that predicts whether an
input event is a fraud. In this scenario (also for other MLasS
APIs), an adversary with only these least capabilities can query
the model via API with unlabeled (real or synthetic) data and
perform MIAI to infer sensitive attributes, e.g., a valid user’s
demographic or personal information [2], [14].

To investigate our research question, we design a novel
black-box MIAI attack with the least capabilities mentioned
above. Our attack, dubbed as the synthetic data-based MIAI
attack (SDMIA), makes the same number of queries to the
target model compared to the state-of-the-art MIAI attacks [3],
[12]. We query the target model to generate synthetic data,
which we then use to train the attack model. We further
consider limiting the number of queries in our attack to half
of the state-of-the-art (denoted as the SDMIA*) attacks and
demonstrate that our proposed synthetic data-based attack still
matches the state-of-the-art MIAI attacks in terms of effec-
tiveness. Our proposed SDMIA renders the following benefits
over the existing attacks– (i) novel back-box attack with the



least capabilities, (ii) query-efficient attack (SDMIA* requires
50% less query), (iii) more realistic and broad applicability,
(iv) performs similarly in most cases compared to existing
attacks, and (v) achieves more stable attack performances than
state-of-the-art MIAI attacks varying target models.

Dataset characteristics and algorithmic bias in training may
contribute to having unfair outcomes in ML models [15], [16],
impacting different training instances’ privacy vulnerability
differently, commonly expressed as disparate vulnerability
property in privacy attacks [12], [17]. This notion captures
serious privacy concerns since there could be scenarios where
MIAI attacks’ average accuracy measured over the entire train-
ing dataset is not significant, but the attacks are highly effective
on a particular set of training instances or subgroups, e.g.,
instances grouped by race, gender, ethnicity, etc. Although
the existing work on ML privacy has explored this disparate
vulnerability issue, it has only been studied in-depth in the
context of membership inference attacks [17]. Since the MIAI
attack is a more consequential and challenging privacy attack,
in our work, we perform an extensive analysis of disparate
vulnerability in the MIAI context.

We extend our study to explore potential disparity con-
tributing properties of training dataset/ target model (e.g.,
correlation, marginal priors, etc.) termed as ‘factors’ in this
paper. First, we investigate two popular ML privacy defense
techniques against the disparate vulnerability property of the
MIAI attack– mutual information regularization [18] and
fairness constraints [17]. We analyze the impacts of these tech-
niques on (i) individual subgroup vulnerability, (ii) disparity
among subgroup vulnerabilities, and (iii) target model utility.
Our experiments show that although these techniques do not
significantly affect target model utility, they fail to perform
consistently in reducing disparity and subgroup vulnerability.
Second, we expand our MIAI disparity analysis and empiri-
cally identify possible factors for the disparity in MIAI. We
further explore how these factors contribute towards disparity
in MIAI, i.e., their normalized weights. Finally, based on our
findings, we discuss potential ways to design effective defenses
for mitigating disparity in MIAI.

We empirically evaluate our SDMIA and SDMIA* on three
different target models (decision tree (DT), logistic regression
(LR), and deep neural network (DNN)) trained on three real
datasets (Adult [19], NLSY [20], and FiveThirtyEight [21]).
Our analysis shows that SDMIA can achieve more stable and
similar performances (even better in some metrics in some
scenarios) compared to the existing MIAI attacks, despite
assuming the least adversarial capabilities and even with fewer
queries. Our in-depth disparity factor analysis demonstrates
that while the target model impacts the most influential dispar-
ity factor (e.g., mutual information in the deep neural network,
correlation in the decision tree), the overall disparity in MIAI
results from the holistic impact of multiple factors. This
finding calls for designing robust multi-factor-based disparity
mitigation strategies to adopt in the future.

The contributions of this paper are as follows:
1) We design a novel black-box MIAI attack that considers

the least adversarial knowledge/capabilities to date while
performing similarly to the state-of-the-art MIAI attacks.

2) We formally define and analyze our proposed MIAI
attack’s disparate vulnerability property and introduce
two metrics for disparity measures.

3) We investigate existing ML privacy defense techniques–
mutual information regularization and fairness con-
straints and show that none of these techniques can
mitigate MIAI disparity consistently.

4) We empirically identify the factors behind the disparity,
their contributions, i.e., their importance/weights towards
disparity, and discuss possible directions for disparity
mitigation.

5) We extensively evaluate the proposed SDMIA using three
different target models trained on three real datasets.

II. PRELIMINARIES

MIAI Attack. Let f be a deterministic function represent-
ing the target ML model. The input of f is a d-dimensional
vector x = [xs, x2, ..., xd], where d signifies the number
of input attributes. Without loss of generality, let xs be the
sensitive attribute and {x2, ..., xd} be the set of the non-
sensitive attributes. An adversary exploits available auxiliary
information in MIAI attacks to infer the training data sample’s
sensitive attribute (xs) value. Adversaries can query the target
models through APIs made available by the ML-as-a-service
(MLaaS) providers [22]–[24]. The auxiliary information may
include full or partial knowledge of the non-sensitive attribute
values {x2, ..., xd} in the training dataset, confusion matrix,
marginal priors, confidence scores, and predicted labels re-
turned by the target model, etc.

A comparative analysis of the adversarial capabilities as-
sumed in Fredrickson et al. attack on decision tree (FJR-
MIA) [3], LOMIA [12], and our SDMIA is illustrated in
Table I. In FJRMIA, an adversary has access to the confusion
matrix, all non-sensitive attribute values of target individuals’
training instances, and marginal priors. It queries the target
model with all possible sensitive attribute values and predicts
the one that maximizes the posterior value computed by
cm[y, y′]∗ps, where cm is the confusion matrix, y, and y′ are
the true label and the model’s predicted label, respectively, and
ps denotes marginal prior of the sensitive attribute value. LO-
MIA [12] considers similar adversarial capability assumptions
except access to the marginal priors.

Attribute Importance. An ML model, either classification
or regression, predicts output y′ based on input attributes
{xs, x2, ..., xd}. However, all input attributes might not be
equally impactful toward prediction [25]. Therefore, the at-
tribute/feature importance is commonly considered to assign
scores to all input attributes [26]. Importance of an attribute
xd in the DT model can be formally defined [27] as below:

ImpAI(xd) = MA(xd)∗Sxd
−MA(Lc)∗SLc−MA(Rc)∗SRc

(1)
where the ImpAI(xd) is the importance of attribute xd (i.e.,
node in DT), MA is the metric value (e.g., Entropy or Gini),



Sxd
is the number of samples at the node, and Rc, Lc indicate

right and left child, respectively. So, importance in DT is
computed by multiplying the attribute’s (node) metric value
with the number of samples at the node and subtracting scores
(metric value * samples) of its left and right child. For DNN
or LR models, attribute importance can be computed using
weighted scores of the attribute coefficients returned by the
trained models [28], [29].

III. RELATED WORK

The concept of model inversion (MI) attack is fairly recent.
Fredrickson et al. [2] proposed the concept of MI attack in
2014 by successfully conducting an attack on linear regression
models to uncover genomics information about target indi-
viduals. MI attacks are applicable to data domains including
image, tabular, text, or audio data [2], [6]. MI attacks in
the image domain (i.e., image reconstruction) have been a
central research focus [3], [6], [30]. However, MIAI attacks
on tabular data are underexplored [3], [12]. Fredrickson et
al. [3] conducted MI attacks on both image and tabular data.
They evaluated the maximum a posteriori (MAP) algorithm
from [2] for black-box MIAI attacks on tabular data (decision
tree). We denoted this baseline by FJRMIA. Another baseline
MIAI attack on tabular data is LOMIA, proposed by Mehnaz
et al. [12], where the adversary trains an attack model querying
the target. Both attacks consider a wide range of capabilities.

In the privacy research domain, membership inference at-
tack [8], [31], [32] and MIAI attack [3], [12] have differ-
ent goals. While the membership inference infers whether a
sample is in the target model training dataset (i.e., binary
classification), MIAI infers the sensitive attribute value of a
training sample. Several works have explored the membership
inference attack based on only the predicted label [31], [32].
Christopher et al. [32] proposed three label-only membership
inference attacks leveraging the robustness of the model,
which can achieve comparable performance as the confidence
score-based attack. Zheng et al. [31] proposed two deci-
sion boundary-based label-only membership inference attacks.
However, recent research shows that membership inference
attack has different characteristics than MIAI attack, and MIAI
does not show any consistent pattern [10]. For example, dataset
complexity and training epochs positively impact membership
inference attack performance, whereas these have no such
impact on the MIAI attack. Similarly, unlike membership
inference, there is no explicit relationship between overfitting
and MIAI attacks. All these distinct characteristics and incon-
sistent patterns make an MIAI attack more challenging than
other privacy attacks, including membership inference.

Commonly used privacy attack defense techniques include
regularization, differential privacy, fairness constraints, and
rounding confidence score [3], [18]. Wang et al. [18] pro-
posed a mutual information regularization technique to defend
against MI attacks (both image and tabular data). However, this
work did not explore the impact of the mutual information
regularization technique on disparate vulnerability property
in MIAI. Therefore, we extend the technique in [18] to

investigate its impact on MIAI disparate vulnerability and
whether it can consistently reduce disparity in MIAI with-
out worsening individual subgroup vulnerability magnitudes.
Another work by Kulynych et al. [17] investigates fairness
constraints and differential privacy as techniques to reduce
disparity in membership inference attacks. Differential privacy
is not effective against MIAI attacks without significantly
compromising model utility [2], [33]. Also, our proposed
attack does not require confidence scores, so rounding confi-
dence is not applicable. Therefore, we only investigate mutual
information regularization and fairness constraints as two
viable MIAI disparity mitigation techniques.

Kulynych et al. perform the first in-depth analysis on
disparate vulnerability in membership inference attacks [17].
They identified overfitting and subgroup size as factors im-
pacting disparity in membership inference attacks. We perform
an in-depth analysis of disparity in MIAI attacks to identify
possible disparity factors with their impacts on MIAI disparity.

IV. MODEL INVERSION ATTACK WITH THE LEAST
ADVERSARY CAPABILITIES

In this section, we first present the threat model and then
illustrate our proposed synthetic data-based MIAI attack (SD-
MIA) with the least adversary capabilities.

TABLE I: Comparison among different attacks in terms of
adversary capabilities.

Capability FJRMIA [3] LOMIA [12] SDMIA
(1) Target model’s confusion matrix   
(2) Marginal prior (sensitive attribute)  
(3) Marginal prior (non-sensitive attributes)  
(4) Possible values of attributes    
(5) Training data instances’ non-sensitive attribute values   
(6) Training data instances’ actual labels   
(7) Target model’s prediction labels    

A. Threat Model

In our threat model, two parties are involved– the model
owner and the adversary. Individual training data instances
are an adversary’s targets. The adversary aims to infer an
individual’s sensitive attribute in the training data. We assume
the adversary does not impact the target model training process
or performance; the adversary only interacts with the model
owner by issuing API queries to the black-box model with the
least capabilities, thereby designing the attack model to infer
target individual’s sensitive attribute in the training data. The
attack is considered successful if the adversary can accurately
infer the target individual’s sensitive attribute value. In Table I,
we illustrate the adversarial capabilities of existing attacks
and our proposed MIAI attack. In our attack, the adversary
has black-box access to the target model and can only obtain
the predicted labels (y′) by querying the model. Also, the
adversary knows the possible values of sensitive and non-
sensitive attributes. Unlike the existing attacks, our attack
does not assume knowledge of marginal priors, target model
confusion matrix cm, or any knowledge about the target model
training dataset instances.
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Fig. 1: (a.) Overview of our proposed SDMIA. It works in 2 phases– phase 1: Synthetic data generation for attack dataset
(DSA), and phase 2: Attack model training and inference. (b.) Importance of attributes in attack model, while estimating
drug marijuana in NLSY dataset.

B. Our Proposed Synthetic Data-based Model Inversion At-
tack (SDMIA)

In this section, we introduce our synthetic data-based MIAI
attack (SDMIA). We also consider an instance of the SDMIA
(SDMIA*) that uses half the number of queries (i.e., 50%) as
all of the existing attacks (i.e., LOMIA [12] and FJRMIA [3]).
We also experiment with 25% and 75% queries and show that
SDMIA is effective in both cases (see Fig. 15 in Appendix).
For each instance in the training dataset, the adversaries in
LOMIA [12] and FJRMIA [3] query k times (k is the number
of possible values of the sensitive attribute), meaning they
require k ∗ m queries in total, where m is the number of
instances in the training dataset. Unlike these attacks, we
generate random queries in SDMIA but constrain the query
numbers to k∗m, which is further reduced to k∗m

2 in SDMIA*.
SDMIA and SDMIA* follow the same attack steps; the only
difference is the number of queries to the target model. Our
attack works for both binary (k = 2) and multi-class (k > 2)
sensitive attributes. However, if the number of possible values
of the sensitive attribute (k) is larger than the number of class
labels, there will always be at least two sensitive attribute
values for which the target model would predict the same
output label (according to the pigeonhole principle), resulting
in no records accepted in Fig.1a. Therefore, we consider k <
number of classes (label), which holds for different real-life
datasets and is consistent with the baseline [12]. SDMIA has
two phases: (1) Synthetic data generation for the attack dataset
(DSA) and (2) attack model training and inference. In Fig. 1a,
we present the overview of our proposed SDMIA strategy.

1) Phase 1: Synthetic Data Generation: The core compo-
nent of our proposed SDMIA is the synthetic data generation
algorithm (Algorithm 1 in Appendix A). This algorithm is
inspired by the synthetic data generation technique proposed
in [8] for membership inference attacks. However, unlike
the existing algorithm, our algorithm is designed for MIAI
attacks only considering access to prediction labels (without
confidence scores). Also, our algorithm generates k query
instances varying k possible sensitive attribute values in each
iteration. The complexity of our algorithm is O(c2 + c1 ∗m),
where m, c1, and c2 stand for loop counter (number of

instances queried), array access time (constant time to access
an attribute’s array for generating records), and outside loop
run time (constant time for initialization purposes outside the
loop). Therefore, our algorithm has linear time complexity.

Our synthetic data generation algorithm consists of three
steps: i) initialization, ii) querying, and iii) selection. In
initialization, the algorithm randomly initializes values for
d− 1 non-sensitive attributes to form the partial query x−. It
also initializes dmax and dmin, which denote the max and min
number of non-sensitive attributes that would change in every
iteration, respectively. Additionally, we initialize max record
rejection threshold rmax. In querying, the adversary varies
the sensitive attribute value and generates k query instances
from x−, i.e., xδ1 , . . . , xδk , where k is the number of unique
possible values of the sensitive attribute. The target model
ftar is then queried with these generated instances, and the
adversary receives the corresponding predictions (y′s).

In selection, the adversary either includes the generated
instances to the attack model training dataset (DSA) or rejects
them based on the returned predictions. If all the k predictions
using k possible values of the sensitive attribute (where k ≥ 2)
are different, we accept the instances to form DSA; otherwise,
we reject them (Fig. 1a). In the above scenario, k query
instances set xδ1 , . . . , xδk is accepted to form DSA if all
the k predictions y′1, . . . , y

′
k are different (green marked in

Fig. 1a). If at least two predictions are the same, the set of
instances is rejected (red marked in Fig. 1a). Regardless of
acceptance/rejection, in every iteration we re-randomize non-
sensitive attribute values by changing dmax non-sensitive at-
tributes (chosen uniformly at random from d−1 non-sensitive
attributes). However, in case of consecutive rejections, we
update dmax. If the number of consecutive rejections exceeds
the max rejection threshold (rmax), we update dmax by max
(dmin, ⌈dmax/2⌉). We reduce dmax to control the search
diameter around the accepted records while re-randomizing.
This enhances search speed and ensures accepted records vary
in the least number of attributes enabling better capture of the
correlation between sensitive the attribute and label.

The goal of generating synthetic data is to capture the
dependency between the input attributes and the output (la-
bel). Since we initialize the non-sensitive attributes randomly



TABLE II: Sensitive attributes (binary) distribution in the
training datasets.

Dataset Training Sensitive Positive Positive Positive
Instances attribute class label class count class %

NLSY 5096 drug marijuana dm yes 961 18.9%
Adult 35222 marital married 16893 47.9%
FiveThirtyEight 331 alcohol yes 266 80.36%

(controlling search diameter) and vary the sensitive attribute
values, the synthetically generated DSA dataset primarily
emphasizes the correlation between the sensitive attribute and
the label of the target model (varying the sensitive attribute
yields different target model predictions). In Fig. 1b, we
demonstrate attribute importance in the attack model to infer
drug marijuana sensitive attribute in NLSY dataset, where
the target model label ratelife has the highest importance
in the attack model (at 50.1%). Also, in the Adult dataset,
among 18,329 single individuals, only 1208 have ≥ 50K label,
i.e., income, whereas, among the remaining 16,893 married
individuals, 7565 have ≥ 50K label. Therefore, to capture this
strong dependency, we consider accepting the set of instances
to form DSA only when all the k predictions from the target
model using k possible sensitive attribute values are different.

2) Phase 2: Attack Model Training and Inference: In this
phase, we train an attack model fadv using the generated
synthetic dataset DSA from phase 1 (Section IV-B1). This
attack model performs the model inversion, i.e., it predicts
sensitive attribute values when given the non-sensitive at-
tributes as the input. More specifically, we train the fadv attack
model with non-sensitive attribute values (xns = x2, ...xd)
and y′ (i.e., prediction) in DSA dataset as the input features
where the output label is the sensitive attribute xs, i.e.,
xs = fadv(y

′∪xns), as shown in Fig. 1a. Once the fadv model
is trained, it can be deployed to infer the sensitive attribute of
any target model training dataset instance. We evaluate the
performance of SDMIA and SDMIA* in Section IV-C4.

C. SDMIA Evaluation

This subsection describes datasets, SDMIA experimental
setup, performance metrics, and comparison among our pro-
posed SDMIA and the existing MIAI attacks.

1) Dataset Description: We use publicly available datasets
described below for our experiments in this paper.

Texas. This dataset is based on Texas Hospital discharge
data [34]. We consider 1st quarter hospital data of five
consecutive years (2006-2010) and extract features related to
patient status, length of hospital stays, illness severity, and
demographic information1. We use pri proc as the label, indi-
cating the primary procedure the patient has undergone (e.g.,
type1, type2, type3 classes). First, we apply stratified sampling
to randomly select 20K instances from each year, based on the
most frequent pri proc. We then combine instances and obtain
a dataset of 100K instances. After additional pre-processing
(removing all duplicate instances), we end up with 89,924

1Our experiments comply with data sharing and re-identification agree-
ments.

instances which we split into 67,443 (∼ 75%) and 22,481 (∼
25%) for training and testing, respectively.

NLSY. The National Longitudinal Survey of Youth (NLSY)
dataset consists of responses from the survey conducted in
1997 [20] on 8984 individuals born between 1980-1984 living
in the US. We extract features related to participant demo-
graphic information, including age, marital status, race, habits
(e.g., smoking, drinking), and ratings of life (participants rate
their life into classes, e.g., excellent, very good, good, fair,
poor) [20]. The dataset has 15 attributes, and we consider
ratings of life, i.e., ratelife (classes: excellent, very good, good,
fair, poor) as the label attribute. After pre-processing, we
obtain 6795 instances which we split into 5096 (∼ 75%) and
1699 (∼ 25%) for training and testing, respectively.

Adult. The adult dataset is extracted from the 1994 Census
database. The purpose is to predict whether an individual has
income is higher or lower than 50K in a year [19] from the in-
dividual’s other features. The dataset has 48,842 instances and
14 attributes, including marital status, occupation, education,
and race. After pre-processing, we obtain 45,222 instances
which we split into 35,222 (∼ 75%) and 10,000 (∼ 25%)
for training and testing, respectively.

FiveThirtyEight. FiveThirtyEight Datalab [21] surveyed
553 individuals to identify their steak preferences, given
their habitual features and demographic data, e.g., smoking,
drinking, age, and gender. This dataset has 15 attributes with
steak type as the target label. After pre-processing, we obtain
331 instances that we use exclusively for training.

2) Experiment Setup: In Table II, we present the total
instances in the training sets and the binary sensitive attributes
we consider, along with their positive class counts in the
training set. In Table IX, we present multi-class sensitive
attributes that we consider. There is no positive class for multi-
class; therefore, we present the average of all class estimation
performances in our experiments. For each dataset, we train 3
different target models in the BigML [35] platform– decision
tree (DT), logistic regression (LR), and deep neural network
(DNN). We use BigML’s 1-click supervised feature for training
the target models with default parameters. We present perfor-
mances of all 3 target models trained on the Adult dataset,
tested on training and test datasets in Tables III, IV, respec-
tively. We observe that target models perform similarly on
training and test datasets, indicating no significant overfitting
on target models. Target model performances trained on other
datasets are presented in Tables X, XI in Appendix. We query
the trained target model with API provided by the BigML to
obtain the attack dataset DSA (using Algorithm 1). For each
target model, we train the attack model as a bootstrap decision-
tree forest of 10 decision-tree models trained on the attack
dataset DSA (i.e., bagging technique), denoted by 1-click en-
semble model in BigML [35]. We use the decision-tree forest,
an ensemble model, to achieve better attack performance.

We compare performances of our proposed SDMIA with
baselines for both binary (k=2) and multi-class (k>2) sensitive
attributes in different datasets, varying the target models. In
binary sensitive attribute (k=2), we consider three different



TABLE III: Target model performances trained on Adult
dataset (tested on training dataset)

Model Precision Recall Accuracy F1 score
DT 83.05% 78.04% 86.15% 80.00%
DNN 77.16% 80.68% 82.83% 79.00%
LR 79.95% 76.02% 84.31% 78.00%

TABLE IV: Target model performances trained on Adult
dataset (tested on test dataset)

Model Precision Recall Accuracy F1 score
DT 81.59% 76.16% 85.29% 78.00%
DNN 75.96% 79.29% 82.11% 77.00%
LR 79.34% 75.2% 84.11% 77.00%
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Fig. 2: Comparison of performance metrics distributions
among SDMIA, SDMIA*, LOMIA, and FJRMIA; while in-
ferring drug marijuana (lower prior dm yes=18.9% positive
class) obtained from 3 target models trained on NLSY dataset.

scenarios (depending on sensitive attribute’s positive class
marginal priors): (i) estimating drug marijuana in NLSY
dataset, where the positive class (i.e., ‘dm yes’) has very
low (18.9%) prior, (ii) estimating alcohol in FiveThirtyEight
dataset, where the positive class (i.e., ‘Yes’) has very high
(80.3%) prior, and (iii) estimating the marital in the Adult
dataset, where priors are balanced, i.e., positive class (i.e.,
‘married’) has 47.96% marginal prior. For each scenario, we
perform all attacks on three target models (DT, LR, DNN)
trained on NLSY, FiveThirtyEight, and Adult datasets. We
present results in Section IV-C4.

3) Evaluation Metrics: Since accuracy is not an effective
evaluation metric for imbalanced class data, we also consider
the F1 score, which balances the precision and recall of
the positive class only. This metric also does not capture
the overall performance. We consider Mathews correlation
coefficient (MCC) and Geometric-mean (G-Mean) [36], which
account for all confusion matrix entries and provide more
balanced measures. We also consider false-positive rates (FPR)
to measure the model’s incorrectness in prediction. In different
metrics, besides numerical comparison, we compare attacks
in attack stability property, i.e., the resistance of the attack
performance to target model variations (model agnostic).

4) SDMIA Performance Comparison:
(1) Estimating binary sensitive attributes (k=2): In Fig. 2,
we present attack performance distributions (horizontal bars
(−) and stars (⋆) in boxes indicate ‘median’ and ‘mean’)
from three different target models in scenario (i), as discussed
in Section IV-C2. Since FJRMIA is impacted by positive
class marginal priors, in scenario (i), we obtain the lowest
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Fig. 3: Comparison of performance metrics distributions
among SDMIA, SDMIA* and existing LOMIA, FJRMIA;
while inferring alcohol (higher marginal prior Yes=80.3%
positive class) obtained from 3 target models trained on
FiveThirtyEight dataset.

performances, i.e., F1 score (8.85%) and G-mean (20.38%)
for FJRMIA (Fig. 2). Mean FPR, F1 score, and accuracy for
SDMIA* are similar to those of LOMIA, despite having the
least adversary capabilities, and queries to the target model
are limited to half. For example, mean FPR and accuracy
scores in LOMIA are 37.3% and 59.23%, whereas SDMIA*
has 36.94% and 59.29% mean FPR and accuracy, respectively.
Also, SDMIA performs similarly to LOMIA. In summary,
all attacks, except FJRMIA, achieve similar performances. In
Table V, we present the attack performances for DT target
models (Tables XVI and XVII in Appendix for DNN, LR).

In Fig. 3, we present distributions of attack performances in
scenario (ii). For higher marginal prior positive class, i.e., in
scenario (ii), FJRMIA achieves the highest recall at 98.75%
but results in an FPR of 98.46% (Fig. 3). In contrast, all other
attacks achieve comparable and more consistent performance.
Moreover, SDMIA and SDMIA* have more stable distribu-
tions compared to LOMIA across different models (Fig. 3).
For example, LOMIA has a higher interquartile range (IQR)
of accuracy (24.32), whereas SDMIA and SDMIA* have 4.07
and 5.28 IQRs, respectively. In some cases, our SDMIA and
SDMIA* outperform LOMIA. For example, the mean values
of precision and F1 score in SDMIA* are 81.08% and 65.98%,
whereas SDMIA achieves 79.76% and 71.42%, and LOMIA
has the lowest values at 55.84% and 50.37%, respectively. In
Table VI, we present the attack performances for DT target
models (Tables XVIII and XIX in Appendix for DNN, LR).

In scenario (iii), when the classes have more balanced
priors, we find LOMIA, SDMIA, and SDMIA* to have similar
performances, and all three outperform FJRMIA. We present
the distribution in the Appendix in Fig. 18; FJRMIA has the
lowest F1 score (35.30%) compared to ∼59% in other attacks.
In Table VII, we present the attack performances for the DT
target model (Tables XX and XXI in Appendix for DNN, LR).

(2) Estimating multi-class sensitive attributes (k>2):
We experiment with multi-class sensitive attributes (k=4)
age={18-29, 30-44, 45-60, >60} in FiveThirtyEight and
race={nonblhis, black, hispanic, mixed} in NLSY dataset. We
compute average class performances for each attack for each
target model. In Fig. 4a and 4b, we present the mean and
standard deviations (error bars) of average class performances



TABLE V: Attack performance while inferring drug marijuana sensitive attribute, against DT model trained on NLSY dataset

Attack Strategy Query# TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 10192 101 3959 176 860 36.46% 10.51% 79.67% 16.32% 31.72% 10.79%
LOMIA [12] 10192 426 2849 1286 535 24.88% 44.33% 64.27% 31.87% 55.27% 10.96%
SDMIA 10192 516 2569 1566 445 24.78% 53.69% 60.54% 33.91% 59.72% 12.59%
SDMIA* 5096 436 2747 1388 525 23.90% 45.37% 62.46% 31.31% 54.90% 9.63%

TABLE VI: Attack performance while inferring alcohol sensitive attribute, against DT model trained on FiveThirtyEight dataset

Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 662 266 0 65 0 80.36% 100.00% 80.36% 89.11% 0.00% 0.00%
LOMIA [12] 662 198 28 37 68 84.26% 74.44% 68.28% 79.04% 56.63% 15.33%
SDMIA 662 196 8 57 70 77.47% 73.68% 61.63% 75.53% 30.11% −13.11%
SDMIA* 331 140 32 33 126 80.92% 52.63% 51.96% 63.78% 50.90% 1.48%

TABLE VII: Attack performance while inferring marital sensitive attribute, against DT model trained on Adult dataset
Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 70444 3788 17818 511 13105 88.11% 22.42% 61.34% 35.75% 46.69% 29.97%
LOMIA [12] 70444 7574 17132 1197 9319 86.35% 44.84% 70.14% 59.02% 64.74% 44.25%
SDMIA 70444 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%
SDMIA* 35222 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%
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Fig. 4: Performances comparison among different attack strate-
gies, while estimating multi-class (k=4) sensitive attribute age
in FiveThirtyEight and race in NLSY dataset.

across models. In both plots, observe that SDMIA and SD-
MIA* perform slightly better than LOMIA in precision and F1
scores and do not perform significantly differently in accuracy
and recall than LOMIA. FJRMIA has higher accuracy than all
attacks due to its biases to class marginal priors, which highly
impacts multi-class accuracy. SDMIA and SDMIA* achieve
slightly better F1 scores than all attacks. Significantly higher
error bars in FJRMIA and LOMIA in most metrics indicate
significant performance variation across models.

In Fig. 15 (Appendix), we present average SDMIA perfor-
mances, varying query numbers (i.e., 25%, 50%, and 75%
fewer queries; and the same queries as existing attacks). It
shows SDMIA is still effective even with queries reduced
beyond 50%. Observe that SDMIA performances drop slightly
as query numbers are reduced (except some outliers). A similar
positive relationship between attack performance and query
numbers is demonstrated by Chandrasekaran et al. [37] for
model extraction attacks.

Discussion. Target model architecture impacts the attack
stability, i.e., causes performance variations (e.g., error bars in
Fig. 4 or higher IQRs in Fig. 3). However, among all attacks,
our proposed SDMIA is more resilient to this phenomenon due
to its ability to capture sensitive attribute-label dependency
effectively compared to the existing attacks. FJRMIA and
LOMIA query with the training data instances (known non-

sensitive attributes). Comparatively higher dissimilarity among
these instances (many non-sensitive attributes differ) causes
higher prediction variations across models, negatively impact-
ing attack stability. In other words, non-sensitive attributes also
have significant attribute importance in the attack. Whereas, in
SDMIA, random record generation with limiting search space
enables comparatively higher similar record generation (only
dmax attributes differ). This contributes to lower prediction
variations across target models, i.e., similar distributions in
attack datasets (label has significantly higher importance in the
attack). Therefore, SDMIA captures sensitive attribute-label
dependency strongly, achieving better stability. In summary,
existing attacks are less stable in both binary and multi-class
sensitive attribute estimation, while SDMIA is more stable.
We conclude that SDMIA effectively estimates both binary
and multi-class sensitive attributes, given that it requires the
least capabilities and 50% fewer queries in SDMIA*.

V. DISPARATE VULNERABILITY IN MIAI

Disparate Vulnerability captures uneven impacts of the
attack on subgroups, i.e., attack performances vary across dis-
joint training instances of subgroups, and particular subgroup
instances might be more vulnerable than other subgroups. For
example, while inferring marital happiness or other personal
sensitive information, divorced individuals might have higher
vulnerability than married individuals. First, we formally
define disparity in subgroup vulnerability and then analyze
two probable solutions for mitigating MIAI disparity– mutual
information regularization and fairness constraints.

A. Formal Definition of Disparity

In an MIAI attack, the performance of the adversary (A)
quantifies the term ‘vulnerability’. We define two types of
‘vulnerability’ in MIAI– i) average vulnerability, when A
has no specific target subgroup knowledge, we refer it as
Va(A), and ii) subgroup vulnerability, when A has subgroup
knowledge and targets a specific subgroup, we refer it as
Vs(A).



Average Vulnerability Va(A): We mathematically define
Va(A) as follows:

Va(A) = Pr[MIAI(ftar, V (xs, xns), dta) = xs] (2)

where V (xs, xns) is the set of possible values of sensitive and
non-sensitive attributes, and dta is the targeted instance in the
training dataset (the randomness is from dta selection). The
vulnerability is determined by the correct estimation of sensi-
tive attribute values (i.e., MIAI(ftar, V (xs, xns), dta) = xs),
where xs is the actual value of the sensitive attribute, and
MIAI(ftar, V (xs, xns), dta) represents the estimated sensi-
tive attribute value.

Subgroup Vulnerability Vs(A): Let the attribute of interest
for subgroup vulnerability be xb (e.g., gender), i.e., we are
interested in understanding whether MIAI attacks pose sig-
nificantly different vulnerability for different subgroups (e.g.,
male, female) based on this xb attribute, where a subgroup
S = sg is defined as the disjoint set of samples that belong to
a particular subgroup. We mathematically define Vs(A) as:

Vs(A) = Pr[(MIAI(ftar, V (xs, sg, xns), dta|S = sg) = xs]
(3)

where all notations are similar to Va(A) with the additional
capability of A to target a specific subgroup S = sg of
subgroup attribute xb (the randomness is from dta selection for
S = sg). Hence, Vs(A) in Eqn. 3 represents the vulnerability
of subgroup sg only.

Disparity: For different subgroups S = s1, ..., sn, the
subgroup vulnerability Vs(A) can vary, i.e., Vs1(A) ̸=
Vs2(A) . . . ̸= Vsn(A). We define disparity in Vs(A) as:

Vds(A) = gap(Vs1(A), ...,Vsn(A)) (4)

where the gap stands for the generic distance among subgroup
vulnerabilities Vs(A) and can be computed using a suitable
metric. We propose two metrics to compute this gap.

B. Proposed Metrics for Disparity Vds(A) Measure

We introduce two metrics as defined below to measure
disparity, i.e., gap among subgroup vulnerabilities.

Absolute Maximum Disparity (AMD): We denote this
metric by the absolute difference between the maximum and
minimum subgroup vulnerabilities (Vs(A)) in an attribute,
expressed as:

Vamd
ds (A) = |Vmax − Vmin| (5)

where Vmax is the maximum subgroup vulnerability and Vmin

is the minimum subgroup vulnerability.
Maximal Mean Disparity Deviation (MMDD): We use

this metric to capture the central tendency, i.e., the maximal
deviation of subgroup vulnerabilities from the mean value. We
denote MMDD by the absolute difference between maximum
subgroup vulnerability Vs(A) and average subgroup vulnera-
bility Va(A) defined in Section V-A. We express MMDD as:

Vmmdd
ds (A) = |Vmax − Va| (6)

0

0.2

0.4

0.6

0.8

1

LOMIA SDMIA* SDMIA

At
ta

ck
 A

cc
ur

ac
y

Male Female

Fig. 5: Illustrating disparity in MIAI attacks– vulnerabilities
in sex subgroups in Adult dataset, while estimating marital.

C. Disparity in SDMIA

We perform experiments with subgroup vulnerabilities
(Vs(A)), and show that disparity exists in both existing and
proposed MIAI attacks. In Fig. 5, we present the subgroup
vulnerabilities for DT target model trained on the Adult dataset
where the adversary estimates marital sensitive attribute. As
first demonstrated by Mehnaz et al. [12] in their LOMIA strat-
egy, the attack accuracy against male and female subgroups are
62.5% and 85.8%, respectively. In our SDMIA and SDMIA*,
we also observe similar trends, i.e., a significant disparity
with ∼62.4% and ∼85.9% attack accuracy against the two
subgroups, respectively. This indicates that an adversary, even
with the least capabilities, can perform SDMIA and achieve
better performance on higher vulnerable subgroups than other
subgroups due to disparity.

Therefore, we perform an in-depth study of MIAI disparity
to investigate the impact of existing privacy defense techniques
on disparity and potential factors contributing to disparity.

D. Impact of Existing Techniques in Disparity Mitigation

We empirically analyze the effectiveness of the existing
privacy defense techniques to mitigate disparity, i.e., Vds(A)
among subgroups without increasing individual subgroup vul-
nerabilities, i.e., Vs(A) and without compromising target
model utility significantly. We investigate the impact of mutual
information regularization and fairness constraints on MIAI
disparity mitigation.

1) Mutual Information Regularization: Wang et al. [18]
proposed a mutual information (MI) regularization based
approach to defend against model inversion attacks. The key
idea is to reduce dependency between target model inputs and
labels by applying a regularization penalty. We extend this
in the context of subgroup vulnerability Vs(A). We aim to
leverage attribute level dependency (i.e., between subgroup
attribute xb and label attribute y′) in the form of mutual
information (MI) and reduce that to investigate its impact on
subgroup vulnerabilities and disparity in MIAI. In our work,
we consider a similar approach as [18] to reduce attribute level
MI by incorporating an MI-based regularizer in the training
loss function. We apply the regularizer as an additional penalty
term in the loss function. We consider the following overall
loss function to train the target model:

Lmi = min
f∈H

Le(y, f(x)) + λI(xb, y
′) (7)



where Lmi is the mutual-information-based regularization loss
which is the sum of cross entropy loss (Le(y, f(x))) and a
penalty term (λI(xb, y

′)), where λ is the regularization weight
coefficient (we consider λ = 0.01), and I(xb, y

′) is the mutual
information (Appendix B2).

2) Fairness Constraints: Since disparate vulnerability is
attributed to the distributional generalization gap in the target
model’s property functions (e.g., loss function that computes
distributional difference for models on input data and outputs
a numeric vector) among different subgroups [17], we aim
to investigate the role of this distributional gap in the case
of MIAI disparity. Fairness is commonly used to reduce this
distributional generalization gap among different subgroups.
For example, let ϕ be the target model’s (ftar) property
function, and x be the input vector. For two subgroups s1 and
s2, the distributional gap in the target model (Dgap) can be
formally defined as the δ deviations (generic distance) between
subgroups in terms of property function ϕ:

Dgap = δ(Pr[ϕ(ftar, x ∈ s1)|s1], P r[ϕ(ftar, x ∈ s2)|s2])
(8)

We consider two fairness constraints– i) demographic parity
(DP), and ii) equalized odds (EO) [38]. We train the model
with the commonly used Exponentiated Gradient reduction
algorithm [39] for classification with fairness. For the ex-
periment, we use the accuracy score metric as a measure of
the gap. DP reduces the distributional gap among subgroups,
ensuring subgroups have a similar percentage of instances with
each label. In contrast, EO reduces the distributional gap by
minimizing true positive and false positive rates’ differences
among subgroups [40].

3) Disparity Mitigation Experiment Setup: In the mutual
information regularization experiment, we apply regularization
between subgroup attribute xb (e.g., marital) and label attribute
y (e.g., income) considering the DNN target models trained
on Adult and NLSY datasets. We train the target model with
regularization and iteratively reduce the loss function defined
in Section V-D1. In our implementation, we have modified the
default loss function provided by the Scikit-learn ML library.
We have computed (between xb and y) another penalty term
(as illustrated in Eqn. 7) and added it with the default cross-
entropy loss function in Scikit-learn. We perform SDMIA to
compute subgroup vulnerabilities after target model training
with regularization. We present the results in Section V-D4.

For the fairness experiment, we experiment with one sub-
group as control (e.g., white in race attribute in the Adult
dataset) with a fixed number of instances, and change the
number of other subgroup’s (target) instances. For each sub-
group size, we randomly select target (e.g., black) subgroup
instances (and repeat the experiment three times). We train
corresponding DT target models (three models) based on these
subgroup sizes, perform SDMIA on each model, and compute
the mean of subgroup vulnerabilities across these three models.
For binary subgroups (e.g., sex), we calculate Vds(A) from
subgroup vulnerabilities using our proposed disparity metrics.
For multi-valued subgroups (e.g., race), we use 1-way ANOVA
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Fig. 6: Comparison between marital and sex subgroup attack
accuracies with and without MI regularization, while estimat-
ing sex and marital sensitive attributes, respectively, in Adult
dataset.

with a pairwise t-test to identify significant subgroups before
calculating Vds(A). Since we perform multiple comparisons,
we also apply Benjamini-Hochberg p-value correction [41]. In
Section V-D5, we present the results.

4) Disparity Mitigation via Mutual Information (MI) Reg-
ularization: In this section, we compare subgroup vulnerabil-
ities, disparity, and target model utilities between two cases–
target models trained (i) with and (ii) without MI regulariza-
tion. We consider the setup discussed in Section V-D3.

Subgroup Vulnerabilities Vs(A). For experiments with
binary subgroups, we consider sex and marital attributes
in the Adult dataset. In Fig. 6a, we present the subgroup
vulnerabilities of individuals with a different marital status
where the adversary estimates the sex attribute. After MI
regularization, single subgroup’s vulnerability is increased to
53.23% from 48.46%, whereas for married subgroup, it is
reduced to 46.56% from 59.94%. In contrast, as shown in
Fig. 6b, male and female subgroups have 62.43%, and 85.90%
vulnerabilities without regularization whereas with regulariza-
tion both are reduced to 40.68% and 78.43%, respectively.

For multi-valued subgroups, we consider race and marital
attributes in the NLSY dataset. From ANOVA test for race
attribute, we obtain mixed and black subgroups as the most
significant pair (Table XIV). Similarly, for marital attribute,
separated and m vskip represent the most significant pair
(Table XV). In Fig. 7a and 7b, we present the comparisons
among significant race and marital subgroups, respectively.
With MI regularization, both subgroups’ vulnerabilities in
race increase (Fig. 7a). In contrast, marital subgroups show a
different pattern. While the separated subgroup’s vulnerability
increases to 76% from 68%, it is reduced to 55% from 65%
for m vskip. We conclude that MI regularization does not
consistently reduce subgroup vulnerabilities in MIAI attacks.

Disparity Vds(A). We measure disparity using our proposed
AMD and MMDD metrics, as presented in Section V-B.
Table VIII shows the computed disparity values. In the Adult
dataset, for marital, both AMD and MMDD values increase
with MI regularization. For example, AMD is increased to
34.33 from 11.48, and MMDD is increased to 16.46 from 5.97
after MI regularization, which we also observe in Fig. 6a. A
similar pattern can be observed in sex subgroups in the Adult
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Fig. 7: Comparison between significant race and marital
subgroup attack accuracies with and without MI regularization,
while estimating drug marijuana sensitive attribute in NLSY
dataset.

dataset. For multi-valued subgroups in the NLSY dataset, i.e.,
both marital and race subgroups, AMD and MMDD values
show a mixed trend. Although AMD in marital increases from
3.33 to 21.66, MMDD decreases from 4.73 to 1.12. In contrast,
AMD in race decreases from 6.62 to 4.59 while MMDD
increases from 5.79 to 7.89. Experiments from both binary
and multi-valued subgroup attributes show that disparity in
MIAI is not consistently reduced with MI regularization. As
illustrated in [18], a highly accurate model is more vulnerable
to MIAI attacks. While regularization reduces overall MIAI
attacks by marginally reducing target model accuracy, it does
not ensure each subgroup’s accuracy is reduced consistently,
thereby causing subgroup vulnerabilities to change in different
margins and impacting disparity.

TABLE VIII: Performance comparisons between models with
and without MI regularization, using proposed disparity met-
rics (AMD, MMDD)

Dataset Subgroup AMD AMD MMDD MMDD
Attribute w/o reg w reg w/o reg w reg

Adult marital 11.48 34.33 5.97 16.46
NLSY race 6.62 4.59 5.79 7.89
Adult sex 23.47 37.74 15.82 25.44
NLSY marital 3.33 21.66 4.73 1.12

Target Model Utility. In Fig. 8a, we present the model util-
ity with and without MI regularization on sex, and marital at-
tributes in the Adult dataset. With regularization, the accuracy
score is slightly reduced to 77.43% and 78.62% from 82.11%
in the cases of sex and marital subgroup attributes, respec-
tively. In Fig. 8b, we present model utility with and without
regularization on race, and marital attributes in the NLSY
dataset. Again, with regularization, the target model accuracy
score is slightly reduced. This indicates MI regularization does
not significantly worsen target model performance.

5) Disparity Mitigation via Fairness Constraints: We ex-
periment with sex and race subgroup attributes, where the
adversary estimates the marital attribute in the Adult dataset.
We follow the setup in Section V-D3.

Subgroup Vulnerabilities Vs(A). First, we consider female
as the target subgroup with sizes 100, 500, 1k, 5k, and 10k and
concatenate these with fixed 10k male instances representing
the control subgroup. In Fig. 9, we present mean vulnerabili-
ties from three models for each size of the target subgroup. We
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Fig. 8: Comparison among target model utility with and
without MI regularization in Adult and NLSY datasets.
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Fig. 9: Comparison between sex subgroups’ vulnerabilities
(female target) without fairness, with DP, and EO constraints,
while estimating marital (Adult dataset). Lower and higher
bars are two subgroup vulnerabilities, so the difference repre-
sents disparity.

observe that male subgroup vulnerability is reduced with both
fairness constraints. In contrast, female subgroup vulnerability
increases slightly with EO while significantly with DP. This
trend remains consistent across different target subgroups
(female) sizes. For example, in the case of size 500, female
subgroup has vulnerability ∼94% and ∼87% with DP and
EO, respectively, compared to ∼85% without any fairness
constraints. Note that there is only a slight change in disparity
with sample size in a model without fairness since disparity
depends on the holistic impact of other factors. We perform a
similar set of experiments on sex subgroup, with male as target
subgroup and observe similar trends (Fig. 16 in Appendix).

For the multi-valued race subgroup, we consider black as
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Fig. 10: Comparison between significant race subgroups’
vulnerabilities without fairness, with DP, and EO constraints,
while estimating marital (Adult dataset). Lower and higher
bars are two subgroup vulnerabilities, so the difference repre-
sents disparity.



the target and white as the control subgroup, keeping other
subgroup instances fixed. From the ANOVA test, we obtain
black and other as the most significant pair (Table XIII). In
Fig. 10, we present their vulnerabilities. Although in most
cases other subgroup’s vulnerability is reduced with fairness,
it is not consistent. In contrast, black subgroup’s vulnerability
increases significantly with DP. For example, in size 1000,
with DP, the black subgroup vulnerability is increased to 85%
with fairness compared to 63% without fairness. Also, with
EO, the vulnerability increases in some subgroup sizes, e.g.,
at 1000. Hence, we conclude that fairness does not consistently
reduce subgroup vulnerabilities in MIAI attacks.

Disparity Vds(A). In Fig. 9, we observe that the disparity
Vds(A) increases with either of the fairness constraints com-
pared to without fairness scenario. Also, from our experiments,
another observation is that disparity with DP is higher than
disparity with EO (Fig. 13 and Fig. 14 in Appendix show
the disparity in separate plots). Fig. 10 shows a similar trend
with DP, i.e., the disparity is increased compared to the
model without fairness in most cases, except for some outliers.
Also, in Fig. 16, in most cases, disparity also increases with
either fairness constraint. In summary, fairness constraints do
not consistently reduce disparity in MIAI. Note that fairness
equalizes subgroups training samples by reducing the distribu-
tional gap. However, subgroup vulnerabilities in MIAI attacks
are estimated on the attack model, where the training set
contains other features than that one equalized by fairness
constraints (i.e., label attribute). Therefore, unlike membership
attack [17], fairness in MIAI does not guarantee consistent
disparity mitigation.

Target Model Utility. We compare target model utility with
and without fairness constraints, considering female as the
target subgroup. We present the comparisons among model
utilities (in accuracy metric) in Fig. 11. It shows that the over-
all model utility is mostly consistent with varying subgroup
sizes. Also, utility is slightly reduced in models trained with
EO compared to a model without fairness, which is further
reduced with DP. We empirically show that fairness constraints
do not significantly compromise target model utility.

VI. DISPARITY MITIGATION

Our empirical evaluations show that MI regularization and
fairness techniques are not consistently effective in reducing
disparity in MIAI (Sections V-D4 and V-D5). While MI
regularization aims to reduce mutual information, fairness
reduces the distributional gap, i.e., overfitting. This indicates
there exist other disparity factors that contribute toward MIAI
disparity. Therefore, we extend our study to investigate other
potential MIAI disparity factors and their contributions, (i.e.,
importance/weights) towards subgroup vulnerability and dis-
parity in MIAI; and ways to mitigate disparity.

A. Disparity Factors

To identify viable disparity factors, we consider two types
of factors– (i) Training dataset-based factors (7): mutual
information, correlation, marginal prior, skewness, kurtosis,
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Fig. 11: Target model utility (accuracy) comparison without
fairness, with DP, and with EO constraints in Adult dataset.
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Fig. 12: Disparity factors’ weights in Texas dataset, vary-
ing target models. * corr=correlation, mi=mutual infor-
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std=standard deviation, skew=skewness, kurt=kurtosis.

covariance, and standard deviation, and (ii) Target model-
based factors (1): overfitting. We first obtain disjoint training
samples for a particular subgroup and then compute these
factors using different statistical formulations. For example,
we use Shannon’s entropy [42] to compute mutual information
between subgroup and label. Statistical factors like skewness
and kurtosis are computed on the training data label distribu-
tion (disjoint subgroup samples) since the label (target model)
has the highest importance in MIAI attack (Fig. 1b). Section B
(Appendix) describes the details of computing these factors.

B. Disparity Factors’ Weight Analysis

We further experiment to identify the weights/importance
of these disparity factors towards disparate vulnerability in
MIAI. For this analysis, we compute disparity factors for
all subgroups in a dataset (discussed in Section VI-A) and
vulnerabilities of all subgroups (applying SDMIA) considering
a target model (e.g., DT or DNN, or LR). We then fit the data
in a linear regression model, where the disparity factors are
inputs, and corresponding subgroup vulnerabilities are outputs.
We obtain disparity factors’ coefficients from the linear regres-
sion model. Disparity factors’ weights are calculated from the
coefficients of the factors in terms of factors’ impact on the
dependent variable (subgroup vulnerability Vs(A)), i.e., odds
ratio [43]. For example, let valcoef be a factor’s coefficient,
then we capture its impact on the label as follows:

logR1 = logR0 + valcoef

=⇒ R1 = R0 ∗ evalcoef
(9)

where R1 is the odds of label attribute Vs(A) with a unit
change of the input factor value, and R0 is the odds without a
unit change of input factor value (initial). For each factor, we



calculate this odds ratio to identify the impact of that factor on
subgroup vulnerability with a unit change of its value. Finally,
we compute the importance of each factor (weight) in terms
of the normalized odds ratio.

C. Impact of Target Model on Disparity Factor Weight

We compute the disparity factors’ weights varying the
target models. In Fig. 12, we present the results on the
Texas dataset. We observe that the target model architecture
significantly impacts disparity factor weight/importance. Our
analysis shows that the correlation has the highest weight for
the DT target model. This can be explained by the fact that the
correlation between inputs and label determines optimal split
criteria in DT, thus positively impacting subgroups’ accuracy
in the target model and hence the disparity in MIAI attack.
Mutual information has a slightly higher weight than the
correlation for both LR and DNN target models. This is
because mutual information inherently captures layered model
internal properties/parameters (invariant to parameterization)
and can interpret the entire learning process, thereby better
capturing subgroups’ disparate behavior as well. We observe
similar patterns in the Adult dataset, presented in Fig. 17.

D. Disparity Mitigation in MIAI Attacks

According to our experiments, no single factor controls
disparity in MIAI. More specifically, correlation and mutual
information seem more important, although depending on
data distribution, other factors might have significant weights
as well (Fig. 12, Fig. 17) and holistically impact disparity.
Therefore, to mitigate disparity in MIAI, it is important to
reduce multiple factors, i.e., adopting a multi-factor-based dis-
parity mitigation technique. One possible direction is to train
the target models with a weighted multi-factor regularization
strategy. It involves first identifying possible disparity factors’
weights in the training data distribution. Then apply regular-
ization on each factor, and adjust the overall loss function
with a weighted regularization (factors’ weights) penalty for all
factors (similar to Eqn. 7). A more generic approach might be
just considering the top few disparity factors and training target
models with regularization on them (e.g., mutual information
and correlation regularization). This might reduce the target
model performance gap among subgroups, contributing to
attack model disparity mitigation. Another possible mitigation
can be guided adversarial training, where the victim can
craft adversarial examples to change training data distribution.
Tuning the training data distribution can regulate disparity
factors’ weight and hence impact disparity in the MIAI attack.
However, this scenario might have a trade-off between target
model performance and disparity.

VII. DISCUSSIONS AND LIMITATIONS

k vs. MIAI Performance. In general, for both k = 2
and k > 2, our proposed SDMIA with the least adversarial
capabilities (even with 50% or 25% fewer queries) performs
comparably or even better in some metrics in some scenarios
(e.g., Tables V-VII, Tables XVI-XXI) compared to the existing

MIAI attacks. As discussed in Section IV-B, we make a
realistic assumption that k < number of classes (label) and
empirically evaluated SDMIA on 3 different real-life datasets
with different k values (tested up to 4). Our evaluations
show that all attack performances degrade with increasing k,
as expected. However, existing attacks do not capture input
output dependency as effectively as SDMIA and, as a result,
suffer more (e.g., ∼ 56% and ∼ 50% accuracy drop in
FJRMIA and SDMIA from k = 2 to k = 4).

Performance Metrics vs. MIAI Attacks. Class imbal-
ance impacts MIAI success rate if measured with accuracy
(discussed in Section V-B). FPR is highly influenced by
marginal prior. Hence, FJRMIA fluctuates more in FPR.
Class imbalance does not affect G-mean and MCC (used in
SDMIA and LOMIA). Attack stability (i.e., IQR/error bars)
depends on training data distribution (e.g., similarity), and
FJRMIA/LOMIA suffer most from this measure, as discussed
in Section IV-C4.

Adaptive Algorithm. Algorithm 1 re-randomizes dmax

attributes randomly in new record generation. Leveraging
confidence scores returned by target models during the pre-
vious query to craft new records might make the algorithm
more adaptive. However, this also widens assumptions on
adversarial capabilities (i.e., confidence score) and might not
be realistic. Therefore, we want to investigate designing a more
adaptive algorithm in future work.

Weak Correlation. If the correlation between the sensitive
attribute and label is weak or no correlation exists, correspond-
ing sensitive attribute is less or not at all vulnerable to an MIAI
attack and our SDMIA generates fewer or no attack records.

Model Extraction and SDMIA. In model extraction at-
tacks, the adversary queries the target model to reconstruct
model parameters [37], [44]. In contrast, the adversary in
SDMIA queries the target model to capture the influence
of the sensitive attribute on the model. Although these two
attacks have very different goals, both rely on the adversary’s
capability of querying the model and leveraging the returned
predictions. In addition, as illustrated in Section IV-C4, in both
attacks, there is a positive relationship between the number of
queries and the attack performances.

VIII. CONCLUSIONS

This paper proposes a new black-box MIAI attack lever-
aging the least adversarial capabilities. We experimentally
evaluate our proposed SDMIA with three target models trained
on three datasets and show that they perform comparably to
existing attacks for binary and multi-valued sensitive attribute
estimation. We extend our study to investigate disparity in
MIAI and show that two existing privacy defense techniques,
mutual information regularization and fairness constraints,
are not consistently effective in disparity mitigation. We also
analyze potential disparity factors and their impacts on the
disparity in MIAI. Finally, we discuss potential disparity
mitigation techniques based on our experimental findings. Our
work sheds light on the future of developing robust multi-
factor-based defense to mitigate disparity in MIAI attacks.
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TABLE IX: Sensitive attributes (multi-class) in Training
datasets.

Dataset Training Instances Sensitive attribute Classes
NLSY 5096 race 4
Adult 35222 education 3
Adult 35222 race 5
Texas 67443 severity illness 5
FiveThirtyEight 331 age 4

APPENDIX

A. Synthetic Data Generation Algorithm for SDMIA

Algorithm presents the steps of synthetic data generation.

Algorithm 1 Synthetic Data Generation Algorithm
Input: Sensitive attribute: xs ∈ {x1, ..., xk}, Non-sensitive attribute: x2 ∈

{x2,1, ..., x2,ns}, ...xd ∈ {xd,1, ..., xd,ns}
Output: Synthetic Dataset DSA

1: procedure Data Synthesize(Sensitive : xs)
2: x− ← RANDV (x2...xd) ▷ Initialize d− 1 non-sensitive
3: j ← 0 ▷ Counter
4: dmax ← cmax ▷ Max non-sensitive to change
5: dmin ← 1 ▷ Min non-sensitive to change
6: rmax ← 2 ▷ Max number of rejection
7: for iteration = 1 to itermax do
8: xδ1 ← x1 ∪ x− ▷ Generate k records

9:
...

10: xδk ← xk ∪ x−

11: y′
1 ← ftar(xδ1) ▷ Query target with k records

12:
...

13: y′
k ← ftar(xδk)

14: if (y′
1 ̸= null) & . . . (y′

k ̸= null) then
15: if y′

1 ̸= y′
2 . . . ̸= y′

k then
16: return xδ1, xδ2, . . .xδk ▷ Sample Accepted
17: else
18: j ← j + 1 ▷ Sample Rejected, increment counter
19: if j ≥ rmax then ▷ Update dmax

20: dmax ← max(dmin, ⌈dmax/2⌉)
21: j ← 0
22: end if
23: end if
24: end if
25: x− ← RANDV (x−, dmax) ▷ Re-randomize x−

26: end for
27: return null
28: end procedure

TABLE X: Target model performances trained on NLSY
dataset (tested on training dataset)

Model Precision Recall Accuracy F1 score
DT 43.41% 35.2% 44.72% 36.00%
DNN 32.01% 30.37% 33.48% 26.00%
LR 27.17% 26.03% 36.87% 24.00%

TABLE XI: Target model performances trained on FiveThir-
tyEight dataset (tested on training dataset)

Model Precision Recall Accuracy F1 score
DT 95.18% 96.86% 96.38% 96.00%
DNN 15.31% 18.77% 8.46% 1.00%
LR 28.51% 25.82% 46.53% 22.00%

B. Disparity Factors Computation

We compute all 8 disparity factors, either training data or
target model related, contributing to the MIAI disparity.

TABLE XII: Abbreviation Table.

Abbreviation Complete meaning
xs sensitive attribute
xns non-sensitive attribute
d total number of attributes
ImpAI attribute Importance
MA attribute Metric
Sxd samples reaching to attribute node xd

Lc left Child
Rc right Child
EO equalized odds fairness constraint
DP demographic parity fairness constraint
AMD absolute maximum disparity
MMDD maximal mean disparity deviation
DT decision tree
LR logistic regression
DNN deep neural network
ftar target model
fadv attack model
DSA attack dataset
Va(A) average vulnerability
Vs(A) subgroup vulnerability
Vds(A) disparity
xb subgroup attribute
Sg subgroup
V ′
s(A) predicted subgroup vulnerability

dta target instances
IQR interquartile range
δ generic distance
H Shannon’s entropy
I mutual information
Lmi mutual inf regularization loss
valcoef coefficient of a disparity factor
ϕ property function
SDMIA synthetic data-based MIAI attack
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Fig. 13: Disparity in sex subgroups in Adult dataset (female
target), while estimating marital sensitive attribute.

1) Correlation: We calculate correlations of each subgroup
with label attributes in the training data. We first test the fol-
lowing hypotheses by performing the Chi-square (χ2) test [45].
H0 (null hypothesis)= S0 and O0 are independent, and Ha

(alternate hypothesis)= S0 and O0 are correlated, where S0

is the subgroup attribute and O0 is the label, all variables
are categorical. We consider significance level α = 0.05.
We present the categories in label attribute (m) and subgroup
attributes (n) in a m x n contingency matrix, where m ≥ 2,
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Fig. 14: Disparity in race subgroups in Adult dataset (black
target), while estimating marital sensitive attribute.

n ≥ 2 and degrees of freedom df = (m − 1) ∗ (n − 1). We
calculate the p-value applying the χ2 test. If p-value≥ 0.05, we
fail to reject the null hypothesis H0. Otherwise, we reject H0

and accept the alternate hypothesis Ha, indicating a significant
correlation. If the test accepts Ha, we compute the correlation
in terms of Cramer’s values, as follows:

Cv =

√
χ2

[n total ∗ (min(m,n)− 1)]
(10)

Where, n total is the total instances, and Cv is Cramer’s value.
We define correlation of a subgroup by computing the average
Cramer’s value with respect to other subgroups.

2) Mutual Information: Mutual Information (MI) captures
the mutual dependency between two variables (i.e., subgroup
and label attributes in our experiment). For each subgroup,
we compute the mean of pairwise MI with respect to another
subgroup, each time considering a different subgroup, and
finally calculate the mean. We compute MI by calculating the
difference between the entropy of label Ŷ , and conditional
entropy of label Ŷ , given the subgroups attribute X , presented
with Shannon’s entropy [42] as below:

I(X, Ŷ ) = H(Ŷ )−H(Ŷ |X) (11)

Where, the conditional entropy H(Ŷ |X) can be formally
defined as below from Shannon’s entropy:

H(Ŷ |X) = −
∑

P (X, Ŷ ) log
P (X, Ŷ )

P (X)
(12)

where Shannon’s entropy [42] is formally defined as:

H(X) = −
n∑

i=1

P (xi) logP (xi) (13)

where there are n possible outcomes x1, ..., xn of the ran-
dom variable X with the probability of them occurring is
P (x1), ..., P (xn).

3) Marginal Prior: Marginal prior is the subgroup proba-
bility of an attribute in the training data, derived as the ratio of
the number of instances of that particular subgroup and total
instances, denoted as follows:

MPclass1 =
Nclass1

N
(14)

TABLE XIII: p-value on ANOVA test & pairwise t-test with
correction for race subgroups in Adult dataset.

p-value White Asian-Pac-Islander Amer-Indian-Eskimo Other Black
White 1.00 1.00 0.54 0.04 0.001
Asian-Pac-Islander 1.00 1.00 0.19 0.01 0.001
Amer-Indian-Eskimo 0.54 0.19 1.00 1.00 0.0002
Other 0.04 0.01 1.00 1.00 0.00004
Black 0.001 0.001 0.0002 0.00004 1.00

Where, MPclass1 is the marginal prior of a class class1,
Nclass1 number of subgroup instances and N is total instances.

4) Distributional Overfitting: We consider the overfitting as
a feature to identify the gap between model performance on
training and test data (accuracy), defined as below:

OVfit = Acctr −Accte (15)

where OVfit is the overfitting of a subgroup, Acctr and Accte
are prediction accuracy on training and test data.

5) Skewness: Skewness is a distributional property. It mea-
sures the deviation of the distribution from the symmetric
normal distribution. We compute skewness as follows:

Sy =

∑N
i=1(yi − ȳ)3/N

σ3
(16)

where Sy is the skewness of label y and N is the total number
of instances, and ȳ is the mean.

6) Kurtosis: Like skewness, kurtosis is a property of the
distribution. Kurtosis measures the distributional peak heights
with respect to the center. We compute kurtosis as follows:

Ky =

∑N
i=1(yi − ȳ)4/N

σ4
(17)

where Ky denotes the kurtosis of label y. The higher the Ky

means the distribution is highly tailed on the center.
7) Covariance: While correlation measures the strengths

of association between two variables, covariance measures the
direction of this association (positive if it moves in the same
direction, otherwise, negative). We compute the covariance in
our experiment between the subgroup and label attribute. We
calculate the covariance using the following formula:

Cov(A,B) =

∑N
i=1(Ai − Ā)(Bi − B̄)

N
(18)

Where Cov(A,B) is the covariance, N is the total number of
instances, Ai and Bi are instance values for the attributes, and
their corresponding means are Ā and B̄.

8) Standard Deviation: Standard deviation (σ) is the
amount of variation of data samples from the expected value.
We compute this on the label distribution of the subgroups.
We calculate σ in terms of the mean µ, as follows:

σy =

∑N
i=1(yi − µ)

N
(19)
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Fig. 15: Average SDMIA attack performances, varying query
numbers to the target model, while estimating drug marijuana
in the NLSY dataset (a, c), and alcohol in the FiveThirtyEight
dataset (b, d).
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Fig. 16: Comparison between sex subgroups (male target)
vulnerabilities without fairness, with DP, and EO constraints,
while estimating marital (Adult dataset). lower and higher bars
are two subgroup vulnerabilities, so the upper half of each bar
is disparity.
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Fig. 17: Disparity factors’ weights in Adult dataset,
varying target models (DT or DNN or LR). *Notations:
corr=correlation, mi=mutual information, ov=overfitting,
mp=marginal prior, cov=covariance, std=standard deviation,
skew=skewness, kurt=kurtosis.
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Fig. 18: Comparison of performance metrics distribution
among the existing FJRMIA, LOMIA, and our proposed
SDMIA obtained from 3 target models trained on Adult dataset
estimating marital sensitive attribute (balanced marginal prior
married positive class).
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Fig. 19: Comparison among vulnerabilities of marital sub-
groups with and without MI regularization, while estimating
drug marijuana sensitive attribute in NLSY dataset.

TABLE XIV: p-value on ANOVA test & pairwise t-test with
correction for race subgroups in NLSY dataset.

p-value nonblhis black hispanic mixed
nonblhis 1.00 1.00 0.04 0.0023
black 1.00 1.00 0.021 0.002
hispanic 0.04 0.021 1.00 0.26
mixed 0.0023 0.002 0.26 1.00

TABLE XV: p-value after ANOVA test and pairwise t-test
with Benjamini-Hochberg correction on marital subgroups in
NLSY dataset.

p-value nevermarried married cohabiting divorced separated m vskip m ivskip widowed
nevermarried 1.00 1.00 0.97 1.00 0.068 0.46 1.00 1.00
married 1.00 1.00 1.00 1.00 0.46 1.00 1.00 1.00
cohabiting 0.97 1.00 1.00 1.00 1.00 0.105 1.00 0.97
divorced 1.00 1.00 1.00 1.00 0.899 0.46 1.00 1.00
separated 0.068 0.46 1.00 0.899 1.00 0.003 0.15 0.46
m vskip 0.46 1.00 0.105 0.46 0.003 1.00 0.46 1.00
m ivskip 1.00 1.00 1.00 1.00 0.15 0.46 1.00 1.00
widowed 1.00 1.00 0.97 1.00 0.46 1.00 1.00 1.00
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Fig. 20: Comparison between vulnerabilities of occupation subgroups with and without MI regularization, while estimating
marital sensitive attribute in Adult dataset.

TABLE XVI: Attack performance while inferring drug marijuana sensitive attribute, against LR target model trained on NLSY
dataset

Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 10192 57 3966 169 904 25.22% 5.93% 78.94% 9.60% 23.85% 3.50%
LOMIA [12] 10192 523 2249 1886 438 21.71% 54.42% 54.40% 31.04% 54.41% 6.90%
SDMIA 10192 604 2421 1714 357 26.06% 62.85% 59.36% 36.84% 60.66% 16.81%
SDMIA* 5096 545 2268 1867 416 22.60% 56.71% 55.20% 32.32% 55.77% 9.06%

TABLE XVII: Attack performance while inferring drug marijuana sensitive attribute, against DNN target model trained on
NLSY dataset

Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 10192 3 4126 9 958 25.00% 0.31% 81.02% 0.62% 5.58% 0.76%
LOMIA [12] 10192 343 2680 1455 618 19.08% 35.69% 59.32% 24.86% 48.10% 0.41%
SDMIA 10192 184 3081 1054 777 14.86% 19.15% 64.07% 16.73% 37.77% −5.79%
SDMIA* 5096 262 2807 1328 699 16.48% 27.26% 60.22% 20.54% 43.02% −4.10%

TABLE XVIII: Attack performance while inferring alcohol sensitive attribute, against LR target model trained on FiveThir-
tyEight dataset

Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 662 266 0 65 0 80.36% 100.00% 80.36% 89.11% 0.00% 0.00%
LOMIA [12] 662 169 31 34 97 83.25% 63.53% 60.42% 72.07% 55.05% 9.16%
SDMIA 662 169 31 34 97 83.25% 63.53% 60.42% 72.07% 55.05% 9.16%
SDMIA* 331 169 31 34 97 83.25% 63.53% 60.42% 72.07% 55.05% 9.16%

TABLE XIX: Attack performance while inferring alcohol sensitive attribute, against DNN target model trained on FiveThir-
tyEight dataset

Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 662 256 3 62 10 80.50% 96.24% 78.25% 87.67% 21.08% 1.75%
LOMIA [12] 662 0 65 0 266 0% 0% 19.64% 0% 0% 0%
SDMIA 662 154 23 42 112 78.57% 57.89% 53.47% 66.67% 45.26% −5.43%
SDMIA* 331 136 29 36 130 79.07% 51.13% 49.85% 62.10% 47.76% −3.38%

TABLE XX: Attack performance while inferring marital sensitive attribute, against LR target model trained on Adult dataset

Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 70444 3861 17697 632 13032 85.93% 22.86% 61.21% 36.11% 46.98% 29.06%
LOMIA [12] 70444 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%
SDMIA 70444 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%
SDMIA* 35222 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%

TABLE XXI: Attack performance while inferring marital sensitive attribute, against DNN target model trained on Adult dataset

Attack Strategy Query # TP TN FP FN Precision Recall Accuracy F1 score G-mean MCC
FJRMIA [3] 70444 3592 17717 612 13301 85.44% 21.26% 60.50% 34.05% 45.34% 27.62%
LOMIA [12] 70444 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%
SDMIA 70444 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%
SDMIA* 35222 7565 17121 1208 9328 86.23% 44.78% 70.09% 58.95% 64.68% 44.12%
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